Неопределенные интегралы. Желтухин В.С. - 17 стр.

UptoLike

Составители: 

Рубрика: 

arcsin
m
ax arccos
m
ax arctg
m
ax Arch
m
ax Arsh
m
ax Arth
m
ax
m 1 a 6= 0
J =
Z
x
2
sin x dx
J =
Z
x
2
d(cos x) = x
2
cos x
Z
(cos x) d(x
2
) =
= x
2
cos x + 2
Z
x cos x dx = x
2
cos x + 2
Z
x d sin x =
= x
2
cos x + 2
µ
x sin x
Z
sin x dx
=
= x
2
cos x + 2(x sin x + cos x) + C.
J
n
=
Z
e
ax
cos(bx) dx (a 6= 0, b 6= 0)
u = cos(bx), dv = e
ax
dx;
du = b sin(bx) dx, v =
e
ax
a
,
J =
1
a
e
ax
cos(bx) +
b
a
Z
e
ax
sin(bx) dx.
u = sin(bx), dv = e
ax
dx, du = b cos(bx) dx, v =
e
ax
a
.
J =
1
a
e
ax
cos(bx) +
b
a
·
1
a
e
ax
sin(bx)
b
a
Z
e
ax
cos(bx) dx
¸
=
=
1
a
e
ax
cos(bx) +
b
a
2
e
ax
sin(bx)
b
2
a
2
J.
arcsinm ax, arccosm ax, arctgm ax, Archm ax, Arshm ax, Arthm ax, ãäå
m ≥ 1  öåëîå, a 6= 0  âåùåñòâåííîå, êîòîðûå âû÷èñëÿþòñÿ èìåííî
ñ ïîìîùüþ èíòåãðèðîâàíèÿ ïî ÷àñòÿì.

    ×àñòî äëÿ ïîëó÷åíèÿ îêîí÷àòåëüíîãî âûðàæåíèÿ íåîáõîäèìî
ïðèìåíÿòü èíòåãðèðîâàíèå ïî ÷àñòÿì íåîäíîêðàòíî.
                                        Z
Ï ð è ì å ð 30. Âû÷èñëèòü J =                   x2 sin x dx.
             Z                                        Z
  .J =       x2 d(− cos x) = −x2 cos x − (− cos x) d(x2 ) =
                        Z                          Z
         = −x2 cos x + 2 x cos x dx = −x2 cos x + 2 x d sin x =
                        µ         Z        ¶
         = −x2 cos x + 2 x sin x − sin x dx =

         = −x2 cos x + 2(x sin x + cos x) + C. /
     Èíîãäà èñïîëüçîâàíèå ôîðìóëû (2) ïðèâîäèò ê óðàâíåíèþ îò-
íîñèòåëüíî èñêîìîãî èíòåãðàëà.
                                            Z
Ï ð è ì å ð 31. Âû÷èñëèòü Jn =                      eax cos(bx) dx (a 6= 0, b 6= 0).
        . Âûáåðåì ñíà÷àëà
                        u = cos(bx),        dv = eax dx;
òîãäà
                                                         eax
                       du = −b sin(bx) dx,            v=     ,
                                                          a
è èíòåãðàë ïðåîáðàçóåòñÿ ê âèäó
                                                Z
                    1              b
                 J = eax cos(bx) +                   eax sin(bx) dx.
                    a              a
Ïðèìåíèì ôîðìóëó èíòåãðèðîâàíèÿ ïî ÷àñòÿì åùå ðàç, ïîëîæèâ
                              ax                                          eax
        u = sin(bx),   dv = e dx,       du = b cos(bx) dx,             v=     .
                                                                           a
 ðåçóëüòàòå ïîëó÷èì
                              ·                 Z             ¸
       1 ax                 b 1 ax            b    ax
   J =   e cos(bx) +             e sin(bx) −      e cos(bx) dx =
       a                    a a               a
       1 ax                 b ax           b2
     =   e cos(bx) +           e sin(bx) − 2 J.
       a                    a2             a
                                       17