Неопределенные интегралы. Желтухин В.С. - 18 стр.

UptoLike

Составители: 

Рубрика: 

J
J =
Z
e
ax
cos(bx) dx =
b sin(bx) + a cos(bx)
a
2
+ b
2
e
ax
+ C .
J
n
=
Z
dx
(x
2
+ a
2
)
n
(n = 1, 2, 3, . . .)
u =
1
(x
2
+ a
2
)
n
, dv = dx,
du =
2nx dx
(x
2
+ a
2
)
(n+1)
, v = x,
J
n
=
x
(x
2
+ a
2
)
n
+ 2n
Z
x
2
dx
(x
2
+ a
2
)
(n+1)
=
x
(x
2
+ a
2
)
n
+ 2n ·
˜
J.
˜
J =
Z
x
2
dx
(x
2
+ a
2
)
(n+1)
=
Z
(x
2
+ a
2
) a
2
(x
2
+ a
2
)
(n+1)
dx =
=
Z
dx
(x
2
+ a
2
)
n
a
2
Z
dx
(x
2
+ a
2
)
(n+1)
= J
n
a
2
J
n+1
.
J
n
=
x
(x
2
+ a
2
)
n
+ 2nJ
n
2na
2
J
n+1
,
     Ïîñëå äâóêðàòíîãî ïðèìåíåíèÿ ôîðìóëû èíòåãðèðîâàíèÿ ïî
÷àñòÿì èñêîìûé èíòåãðàë îêàçàëñÿ âûðàæåííûì ÷åðåç ñàìîãî ñåáÿ.
Ðàçðåøàÿ ïîëó÷åííîå ðàâåíñòâî îòíîñèòåëüíî J , ïîëó÷èì
               Z
                                                 b sin(bx) + a cos(bx) ax
         J=        eax cos(bx) dx =                                   e + C. /
                                                        a2 + b2
      ðÿäå ñëó÷àåâ ïðèìåíåíèå ôîðìóëû (2) ïðèâîäèò ê ðåêóð-
ðåíòíûì ñîîòíîøåíèÿì.
                                                            Z
                                                                        dx
Ï ð è ì å ð 32. Âû÷èñëèòü Jn =                                                 n
                                                                                        (n = 1, 2, 3, . . .).
                                                                 (x2    +    2
                                                                            a)
        . Âûáåðåì
                                             1
                              u=                        n
                                                            ,    dv = dx,
                                      (x2 + a2 )
òîãäà
                                             2nx dx
                          du = −                       (n+1)
                                                                   ,     v = x,
                                       (x2     +   a2 )
è ïî ôîðìóëå (2)
                                      Z
                   x                               x2 dx                            x                  ˜
    Jn =                  n
                              + 2n                              (n+1)
                                                                        =                   n
                                                                                                + 2n · J.
           (x2 + a2 )                     (x2 + a2 )                         (x2 + a2 )

        Ïîñëåäíèé èíòåãðàë ïðåîáðàçóåì ñëåäóþùèì îáðàçîì:
               Z                                   Z
                           x2 dx                        (x2 + a2 ) − a2
        J˜ =                      (n+1)
                                           =                                (n+1)
                                                                                    dx =
                       (x2 + a2 )                       (x2 + a2 )
               Z                               Z
                           dx              2                      dx
           =                      n
                                      −a                                (n+1)
                                                                                = Jn − a2 Jn+1 .
                       (x2 + a2 )                      (x2 + a2 )

Ïîäñòàâëÿÿ ýòî âûðàæåíèå â ïðåäûäóùåå ðàâåíñòâî, ïðèäåì ê ñî-
îòíîøåíèþ
                                      x
                        Jn =                   n
                                                   + 2nJn − 2na2 Jn+1 ,
                                (x2 + a2 )


                                                       18