Неопределенные интегралы. Желтухин В.С. - 23 стр.

UptoLike

Составители: 

Рубрика: 

J =
Z
2x
2
+ 2x + 13
(x 2) (x
2
+ 1)
2
dx
P
2
(x)
Q
5
(x)
=
2x
2
+ 2x + 13
(
x
2) (
x
2
+ 1)
2
P
2
(x)
Q
5
(x)
=
2x
2
+ 2x + 13
(x 2) (x
2
+ 1)
2
=
A
x 2
+
Bx + C
x
2
+ 1
+
Dx + E
(x
2
+ 1)
2
.
2x
2
+2x+13 = A
¡
x
2
+ 1
¢
2
+(Bx+C)(x
2
+1)(x2)+(Dx+E)(x2).
x
x
4
0 = A + B
x
3
0 = 2B + C
x
2
2 = 2A + B 2C + D
x
1
2 = 2B + C 2D + E
x
0
13 = A 2C 2E
A = 1 B = 1 C = 2 D = 3 E = 4
2x
2
+ 2x + 13
(x 2) (x
2
+ 1)
2
=
1
x 2
x + 2
x
2
+ 1
3x + 4
(x
2
+ 1)
2
.
J =
Z
dx
x 2
Z
x + 2
x
2
+ 1
dx
Z
3x + 4
(x
2
+ 1)
2
dx =
=
1
2
3 4x
x
2
+ 1
+
1
2
ln
(x 2)
2
x
2
+ 1
4 arctg x + C.
ïîýòîìó ïîëó÷åííàÿ ñèñòåìà íèêîãäà íå áóäåò ïðîòèâîðå÷èâîé, è
âñåãäà  îïðåäåëåííîé.
     Ïîÿñíèì ñêàçàííîå ïðèìåðîì.
                                           Z
                                              2x2 + 2x + 13
Ï ð è ì å ð 33. Âû÷èñëèòü èíòåãðàë J =                         dx.
                                             (x − 2) (x2 + 1)2
                                   P2 (x)   2x2 + 2x + 13
     . Ñîãëàñíî òåîðåìå, äëÿ äðîáè        =                    èìå-
                                   Q5 (x) (x − 2) (x2 + 1)2
åòñÿ ðàçëîæåíèå

     P2 (x)   2x2 + 2x + 13      A    Bx + C    Dx + E
            =                 =     +        +           .
     Q5 (x) (x − 2) (x2 + 1)2   x−2   x2 + 1   (x2 + 1)2
Ïðèâîäÿ ñóììó ñïðàâà ê îáùåìó çíàìåíàòåëþ, è ïðèðàâíèâàÿ ÷èñ-
ëèòåëè ïîëó÷èâøèõñÿ äðîáåé, ïðèäåì ê òîæäåñòâó
              ¡      ¢2
2x2 +2x+13 = A x2 + 1 +(Bx+C)(x2 +1)(x−2)+(Dx+E)(x−2).

Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè îäèíàêîâûõ ñòåïåíÿõ x ñëåâà è
ñïðàâà, ïîëó÷èì ñèñòåìó èç ïÿòè óðàâíåíèé


                   x4 0    =   A+B ,
                   x3 0    =   −2B + C ,
                   x2 2    =   2A + B − 2C + D,
                   x1 2    =   −2B + C − 2D + E ,
                   x0 13   =   A − 2C − 2E ,
îòêóäà A = 1, B = −1, C = −2, D = −3, E = −4. Òàêèì îáðàçîì,

           2x2 + 2x + 13        1    x+2    3x + 4
                            =      −      −          .
          (x − 2) (x2 + 1)2   x − 2 x2 + 1 (x2 + 1)2
     Èñïîëüçóÿ ïðèâåäåííûå âûøå ôîðìóëû äëÿ èíòåãðàëîâ îò ýëå-
ìåíòàðíûõ äðîáåé, ïîëó÷èì

               Z      Z             Z
                dx      x+2             3x + 4
        J =         −          dx −              dx =
               x−2      x2 + 1         (x2 + 1)2
            1 3 − 4x 1 (x − 2)2
          =         + ln 2        − 4 arctg x + C. /
            2 x2 + 1 2     x +1

                                 23