Неопределенные интегралы. Желтухин В.С. - 35 стр.

UptoLike

Составители: 

Рубрика: 

x
2
+ 3x + 5 = A(x
2
2x + 10) + (Ax + B)(x 1) + λ,
1 = 2A, 3 = 3A + B, 5 = 10A B + λ,
A =
1
2
, B =
9
2
, λ =
9
2
.
J =
1
2
(x + 9)
p
x
2
2x + 10 +
9
2
Z
dx
p
(x 1)
2
+ 9
=
=
x + 9
2
p
x
2
2x + 10 +
9
2
ln
³
x 1 +
p
x
2
2x + 10
´
+ C.
Z
dx
(x α)
n
p
ax
2
+ bx + c
Z
dx
(x α)
n
p
ax
2
+ bx + c
n > 0
x α =
1
t
J =
Z
dx
(x 3)
p
x
2
+ 4
x 3 =
1
t
, dx =
dt
t
2
;
J =
Z
dt
p
13t
2
+ 6t + 1
=
=
1
13
Z
d
¡
13 t + 3/
13
¢
q
¡
13 t + 3/
13
¢
2
+ 4/13
=
=
1
13
ln
¯
¯
¯
¯
13 t +
3
13
+
p
13t
2
+ 6t + 1
¯
¯
¯
¯
+ C =
=
1
13
ln
¯
¯
¯
¯
¯
13
x 3
+
3
13
+
p
x
2
+ 4
x 3
¯
¯
¯
¯
¯
+ C.
Ïðèâîäÿ âûðàæåíèå ñïðàâà ê îáùåìó çíàìåíàòåëþ è ïðèðàâíèâàÿ
÷èñëèòåëè, ïîëó÷àåì
         x2 + 3x + 5 = A(x2 − 2x + 10) + (Ax + B)(x − 1) + λ,
îòêóäà
             1 = 2A,     3 = −3A + B,           5 = 10A − B + λ,
èëè
                             1            9           9
                       A=      ,   B=       ,    λ=     .
                             2            2           2
Ïîýòîìó
                 p                      Z
        1                             9            dx
 J =      (x + 9) x2 − 2x + 10 +            p                   =
        2                             2       (x − 1)2 + 9
        x + 9p 2                  9 ³             p
                                                       2
                                                                    ´
    =           x − 2x + 10 + ln x − 1 + x − 2x + 10 + C. /
           2                      2
                                              Z
                                                                 dx
 Èíòåãðèðîâàíèå âûðàæåíèé âèäà                                p
                                                 (x − α)n ax2 + bx + c
                        Z
                                        dx
      Èíòåãðàëû âèäà                  p                  , ãäå n > 0  öåëîå
                           (x − α)n ax2 + bx + c
÷èñëî, ïðèâîäÿòñÿ ê èíòåãðàëó îò ðàöèîíàëüíîé ôóíêöèè ñ ïîìî-
                             1
ùüþ ïîäñòàíîâêè x − α = .
                             t         Z
                                                  dx
Ï ð è ì å ð 43. Âû÷èñëèòü J =                      p           .
                                          (x − 3) x2 + 4
      . Ïðèìåíÿåì ïîäñòàíîâêó
                                 1               dt
                        x − 3 = , dx = − 2 ;
                                  t              t
òîãäà
         Z
                  dt
 J =− p                      =
              13t2 + 6t + 1
                        Z           ¡√          √ ¢
                    1            d     13 t + 3/   13
              =−√          q ¡√              √ ¢2                =
                     13           13 t + 3/ 13 + 4/13
                      ¯                                      ¯
                1     ¯√            3     p                  ¯
          = − √ ln ¯¯ 13 t + √ + 13t2 + 6t + 1¯¯ + C =
                13                  13¯                               ¯
                                      ¯ √                  p
                               1      ¯ 13         3           x + 4 ¯¯
                                                                 2
                        = − √ ln ¯            +√ +                    ¯ + C. /
                               13 ¯ x − 3           13       x−3 ¯

                                     35