Неопределенные интегралы. Желтухин В.С. - 49 стр.

UptoLike

Составители: 

Рубрика: 

sin x =
2 tg(x/2)
1 + tg
2
(x/2)
=
2t
1 + t
2
, cos x =
1 tg
2
(x/2)
1 + tg
2
(x/2)
=
1 t
2
1 + t
2
,
x = 2 arctg t, dx =
2 dt
1 + t
2
,
Z
R(sin x, cos x) dx = 2
Z
R
µ
2t
1 + t
2
,
1 t
2
1 + t
2
dt
1 + t
2
.
R(sin x, cos x) = R(sin x, cos x)
t = cos x, x (π/2, π/2)
R(sin x, cos x) = R(sin x, cos x)
t = sin x, x (0, π)
R(sin x, cos x) = R(sin x, cos x)
t = tg x, x (π/2, π/2)
J =
Z
sin
2
x cos
3
x dx
cos x
t = sin x cos x dx = dt sin
2
x = 1t
2
J =
Z
t
2
(1 t
2
) dt =
t
3
3
t
5
5
+ C =
sin
3
x
3
sin
5
x
5
+ C.
J =
Z
sin
5
x
cos
4
x
dx
sin x
sin x t = cos x
J =
Z
t
4
2 t
2
+ 1
t
4
dt = t
2
t
+
1
3t
3
+ C =
= cos x
2
cos x
+
1
3 cos
3
x
+ C.
Äåéñòâèòåëüíî,

            2 tg(x/2)     2t                            1 − tg2 (x/2) 1 − t2
  sin x =              =       ,                cos x =              =       ,
          1 + tg2 (x/2) 1 + t2                          1 + tg2 (x/2) 1 + t2
                                                       2 dt
                       x = 2 arctg t,           dx =         ,
                                                      1 + t2
òàê ÷òî
          Z                            Z        µ                ¶
                                               2t    1 − t2            dt
              R(sin x, cos x) dx = 2       R       ,                        .
                                             1 + t2 1 + t2           1 + t2
     Óíèâåðñàëüíàÿ òðèãîíîìåòðè÷åñêàÿ ïîäñòàíîâêà èíîãäà ïðè-
âîäèò ê ñëîæíûì âûêëàäêàì.  íåêîòîðûõ ñëó÷àÿõ öåëü ìîæåò áûòü
áûñòðåå è ïðîùå äîñòèãíóòà ñ ïîìîùüþ äðóãèõ ïîäñòàíîâîê:

 1) Åñëè R(− sin x, cos x) = −R(sin x, cos x), òî óäîáíåå îêàçûâàåò-
    ñÿ ïîäñòàíîâêà t = cos x, x ∈ (−π/2, π/2);

 2) Åñëè R(sin x, − cos x) = −R(sin x, cos x) , òî ïðèìåíÿþò ïîäñòà-
    íîâêó t = sin x, x ∈ (0, π);

 3) Åñëè R(− sin x, − cos x) = R(sin x, cos x) òî ýôôåêòèâíåå ïðè-
    ìåíèòü ïîäñòàíîâêó t = tg x, x ∈ (−π/2, π/2).
                                            Z
Ï ð è ì å ð 53. Âû÷èñëèòü J =                    sin2 x cos3 x dx.
      . Ïîäèíòåãðàëüíîå âûðàæåíèå íå÷åòíî îòíîñèòåëüíî cos x, ïî-
ýòîìó ïðèìåíÿåì ïîäñòàíîâêó t = sin x, cos x dx = dt, sin2 x = 1 − t2 :
          Z
              2     2       t3 t5            sin3 x sin5 x
      J = t (1 − t ) dt = − + C =                    −      + C. /
                             3    5            3         5
                                     Z
                                        sin5 x
Ï ð è ì å ð 54. Âû÷èñëèòü J =                  dx.
                                       cos4 x
      . Ïîäèíòåãðàëüíîå âûðàæåíèå ìåíÿåò çíàê ïðè çàìåíå sin x íà
− sin x. Ïîäñòàíîâêà t = cos x äàåò:
         Z 4
           t − 2 t2 + 1             2     1
  J =−                  dt =  −t −    +      +C =
                t4                  t 3t3
                                                   2       1
                                  = − cos x −          +       + C. /
                                                cos x 3 cos3 x


                                           49