Неопределенные интегралы. Желтухин В.С. - 51 стр.

UptoLike

Составители: 

Рубрика: 

sh x =
2 th(x/2)
1 th
2
(x/2)
=
2t
1 t
2
, ch x =
1 + th
2
(x/2)
1 th
2
(x/2)
=
1 + t
2
1 t
2
,
x = 2 Arth t, dx =
2 dt
1 t
2
,
Z
R(sh x, ch x) dx = 2
Z
R
µ
2t
1 t
2
,
1 + t
2
1 t
2
dt
1 t
2
.
R(sh x, ch x) = R(sh x, ch x), t = ch x
R(sh x, ch x) = R(sh x, ch x), t = sh x
R(sh x, ch x) = R(sh x, ch x), t = th x
R(sh x, ch x)
J =
Z
ch
3
x sh
8
x dx
ch x
t = sh x
J =
Z
(1 + sh
2
x) sh
8
x d sh x =
Z
(1 + t
2
)t
8
dt =
=
t
9
9
+
t
11
11
+ C =
1
9
sh
9
x +
1
11
sh
11
x + C.
J =
Z
2 sh x + 3 ch x
4 sh x + 5 ch x
dx
ch x sh x
(ch x)
0
= sh x, (sh x)
0
= ch x.
2 sh x + 3 ch x = α(4 sh x + 5 ch x) + β(4 ch x + 5 sh x).
ýòîì
           2 th(x/2)     2t                           1 + th2 (x/2) 1 + t2
  sh x =              =       ,               ch x =               =       ,
         1 − th2 (x/2) 1 − t2                         1 − th2 (x/2) 1 − t2
                                                     2 dt
                       x = 2 Arth t,          dx =         ,
                                                    1 − t2
òàê ÷òî
          Z                          Z        µ                     ¶
                                             2t    1 + t2                 dt
              R(sh x, ch x) dx = 2       R       ,                             .
                                           1 − t2 1 − t2                1 − t2
    Òàê æå, êàê è ïðè èíòåãðèðîâàíèè òðèãîíîìåòðè÷åñêèõ âûðà-
æåíèé, â ðÿäå ñëó÷àåâ óäîáíåå äðóãèå ïîäñòàíîâêè:
 1) Åñëè R(− sh x, ch x) = −R(sh x, ch x),                òî    t = ch x;
 2) Åñëè R(sh x, − ch x) = −R(sh x, ch x),                òî    t = sh x;
 3) Åñëè R(− sh x, − ch x) = R(sh x, ch x),               òî    t = th x.
     Òàêæå, êàê è â èíòåãðàëàõ îò òðèãîíîìåòðè÷åñêèõ ôóíêöèé,
èíîãäà èíòåãðèðîâàíèå âûðàæåíèé âèäà R(sh x, ch x) ìîæåò áûòü
âûïîëíåíî äðóãèìè ìåòîäàìè.
                                          Z
Ï ð è ì å ð 58. Âû÷èñëèòü J =                     ch3 x sh8 x dx.
     . Ïîäèíòåãðàëüíîå âûðàæåíèå íå÷åòíî îòíîñèòåëüíî ch x; ïðè-
ìåíÿåì ïîäñòàíîâêó t = sh x. Èìååì
              Z                         Z
                       2     8
         J =    (1 + sh x) sh x d sh x = (1 + t2 )t8 dt =
             t9 t11        1        1 11
          =     +    + C = sh9 x +     sh x + C. /
              9   11       9        11
                              Z
                                2 sh x + 3 ch x
Ï ð è ì å ð 59. Âû÷èñëèòü J =                   dx.
                                4 sh x + 5 ch x
     . Âîñïîëüçóåìñÿ òåì îáñòîÿòåëüñòâîì, ÷òî è ÷èñëèòåëü è çíà-
ìåíàòåëü åñòü ëèíåéíàÿ êîìáèíàöèÿ ch x è sh x, è, êðîìå òîãî,

                      (ch x)0 = sh x,         (sh x)0 = ch x.
Ïðåäñòàâèì ÷èñëèòåëü â âèäå ëèíåéíîé êîìáèíàöèè çíàìåíàòåëÿ è
åãî ïðîèçâîäíîé:

          2 sh x + 3 ch x = α(4 sh x + 5 ch x) + β(4 ch x + 5 sh x).

                                         51