Неопределенные интегралы. Желтухин В.С. - 54 стр.

UptoLike

Составители: 

Рубрика: 

Z
sin
ν
x cos
µ
x dx =
sin
ν+1
x cos
µ+1
x
µ + 1
+
+
ν + µ + 2
µ + 1
Z
sin
ν
x cos
µ+2
x dx, µ 6= 1;
Z
sin
ν
x cos
µ
x dx = =
sin
ν+1
x cos
µ+1
x
ν + 1
+
ν + µ + 2
ν + 1
Z
sin
ν+2
x cos
µ
x dx, ν 6= 1;
Z
sin
ν
x cos
µ
x dx = =
sin
ν+1
x cos
µ1
x
ν + µ
+
+
µ 1
ν + µ
Z
sin
ν
x cos
µ2
x dx, ν + µ 6= 0;
Z
sin
ν
x cos
µ
x dx = =
sin
ν1
x cos
µ+1
x
ν + µ
+
+
ν 1
ν + µ
Z
sin
ν2
x cos
µ
x dx, ν + µ 6= 0.
ν µ
ν µ
ν µ 1 0 1
1)
Z
dx = x + C; 2)
Z
cos x dx = sin x + C;
3)
Z
sin x dx = cos x + C; 4)
Z
dx
cos x
= ln
¯
¯
¯
tg
³
x
2
+
π
4
´
¯
¯
¯
+ C;
5)
Z
dx
sin x
= ln
¯
¯
¯
tg
x
2
¯
¯
¯
+ C; 6)
Z
sin x
cos x
dx = ln |cos x| + C;
7)
Z
cos x
sin x
dx = ln |sin x| + C; 8)
Z
sin x cos x dx =
sin
2
x
2
+ C;
9)
Z
dx
sin x cos x
= ln |tg x| + C .
ñîîòâåòñòâóþùèõ ôîðìóë äëÿ èíòåãðàëà îò äèôôåðåíöèàëüíîãî áè-
íîìà (c. 47):

      Z
             ν      µ      sinν+1 x cosµ+1 x
  (I) sin x cos x dx = −                      +
                                 µ + 1Z
                           ν+µ+2
                         +                sinν x cosµ+2 x dx, µ 6= −1;
                             µ+1
     Z
         ν      µ          sinν+1 x cosµ+1 x
 (II) sin x cos x dx = =                      +
                                ν Z+ 1
                        ν+µ+2
                                      sinν+2 x cosµ x dx, ν 6= −1;
                          ν+1
     Z
                           sinν+1 x cosµ−1 x
(III) sinν x cosµ x dx = =                    +
                                νZ+ µ
                           µ−1
                         +           sinν x cosµ−2 x dx, ν + µ 6= 0;
                           ν+µ
     Z
         ν      µ          sinν−1 x cosµ+1 x
(IV) sin x cos x dx = =                       +
                                νZ+ µ
                           ν−1
                         +           sinν−2 x cosµ x dx, ν + µ 6= 0.
                           ν+µ
     Ýòè ôîðìóëû ïîçâîëÿþò óâåëè÷èòü èëè óìåíüøèòü ïîêàçà-
òåëü ν èëè µ íà 2 (çà óêàçàííûìè èñêëþ÷åíèÿìè). Åñëè îáà ïî-
êàçàòåëÿ ν è µ  öåëûå ÷èñëà, òî ïîñëåäîâàòåëüíûì ïðèìåíåíèåì
ôîðìóë ïðèâåäåíèÿ ìîæíî ñâåñòè âû÷èñëåíèå èíòåãðàëà ê îäíîìó
èç äåâÿòè ýëåìåíòàðíûõ èíòåãðàëîâ, îòâå÷àþùèõ ðàçëè÷íûì êîì-
áèíàöèÿì èç çíà÷åíèé ν è µ, ðàâíûõ −1, 0 èëè 1:

      Z                                     Z
 1)       dx = x + C;                 2)     cos x dx = sin x + C;
      Z                                    Z             ¯ ³ x π ´¯
                                              dx         ¯            ¯
 3)       sin x dx = − cos x + C; 4)                = ln ¯tg    +     ¯ + C;
      Z                                    Z cos x           2     4
           dx         ¯ x¯                   sin x
                      ¯     ¯
 5)              = ln ¯tg ¯ + C;        6)         dx = − ln | cos x| + C;
          sin x           2                  cos x
      Z                                    Z
          cos x                                               sin2 x
 7)              dx = ln | sin x| + C; 8) sin x cos x dx =           + C;
      Z   sin x                                                 2
              dx
 9)                    = ln |tg x| + C .
          sin x cos x

                                       54