Математика. Жулева Л.Д - 107 стр.

UptoLike

Рубрика: 

3.4. ÷ÁÒÉÁÎÔÙ ËÏÎÔÒÏÌØÎÏÊ ÒÁÂÏÔÙ ½6 107
4.
x
1
x
2
6 1,
2x
1
+ x
2
> 2,
x
1
2x
2
> 0,
x
1
> 0, x
2
> 0,
f = x
1
+ 3x
2
max .
5.
2x
1
+ 3x
2
> 6,
x
1
2x
2
> 9,
5x
1
3x
2
6 15,
x
1
> 0, x
2
> 0,
f = 4x
1
+ 3x
2
max .
6.
2x
1
x
2
6 6,
x
1
3x
2
> 6,
x
1
+ 2x
2
6 6,
x
1
> 0, x
2
> 0,
f = x
1
+ 3x
2
max .
7.
x
1
+ 2x
2
6 14,
5x
1
3x
2
> 15,
x
1
3x
2
6 3,
x
1
> 0, x
2
> 0,
f = x
1
+ x
2
max .
8.
x
1
+ 2x
2
6 12,
x
1
x
2
6 4,
2x
1
3x
2
6 4,
x
1
> 0, x
2
> 0,
f = 2x
1
+ 3x
2
max .
9.
2x
1
+ x
2
6 10,
2x
1
3x
2
> 6,
x
1
+ 2x
2
> 4,
x
1
> 0, x
2
> 0,
f = 2x
1
+ 8x
2
max .
úÁÄÁÎÉÅ 5.
îÁÊÔÉ ÜËÓÔÒÅÍÁÌÉ ÓÌÅÄÕÀÝÉÈ ÆÕÎËÃÉÏÎÁÌÏ×.
0. J[y(x)] =
ln 2
R
0
((y
0
)
2
+ 3y
2
)e
2x
dx, y(0) = 0, y(ln 2) = 1;
1. J[y(x)] =
1
R
0
(y
02
+ 9y
2
3x) dx, y(0) = 0, y(1) = 1;
3.4. ÷ÁÒÉÁÎÔÙ ËÏÎÔÒÏÌØÎÏÊ ÒÁÂÏÔÙ ½6                           107
      
       x − x2 6 1,
       1
      
        2x1 + x2 > 2,
   4.
      
       x1 − 2x2 > 0,
       x > 0, x > 0,
        1          2
      f = x1 + 3x2 → max .
     
       2x + 3x2 > 6,
      1
     
        x1 − 2x2 > −9,
  5.
     
       5x1 − 3x2 6 15,
      x > 0, x > 0,
         1         2
       f = −4x1 + 3x2 → max .
     
       2x − x2 6 6,
      1
     
        x1 − 3x2 > −6,
  6.
     
       x1 + 2x2 6 −6,
     
        x1 > 0, x2 > 0,
       f = x1 + 3x2 → max .
     
       x + 2x2 6 14,
      1
     
        5x1 − 3x2 > −15,
  7.
     
       x1 − 3x2 6 −3,
     
        x1 > 0, x2 > 0,
       f = x1 + x2 → max .
     
       x + 2x2 6 12,
      1
     
        x1 − x2 6 4,
  8.
     
       2x1 − 3x2 6 4,
     
        x1 > 0, x2 > 0,
       f = 2x1 + 3x2 → max .
     
       2x + x2 6 10,
      1
     
        2x1 − 3x2 > −6,
  9.
     
       x1 + 2x2 > 4,
     
        x1 > 0, x2 > 0,
       f = 2x1 + 8x2 → max .
  úÁÄÁÎÉÅ 5.
  îÁÊÔÉ ÜËÓÔÒÅÍÁÌÉ ÓÌÅÄÕÀÝÉÈ ÆÕÎËÃÉÏÎÁÌÏ×.
               ln
                R2 0 2
  0. J[y(x)] = ((y ) + 3y 2 )e2x dx, y(0) = 0, y(ln 2) = 1;
               0
              R1
  1. J[y(x)] = (y 02 + 9y 2 − 3x) dx, y(0) = 0, y(1) = 1;
              0