Теоретическая механика. Кинематика. Калабин Н.Ф - 9 стр.

UptoLike

Составители: 

Рубрика: 

9
Механизм состоит из ступенчатых колес 1-3, находящихся в зацеплении или связанных ременной
передачей, зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес (рис.
2.0 - 2.9, табл. 2). Радиусы ступеней колес равны соответственно: у колеса 1 – r
1
= 2см,
1
R = 4 см, у
колеса 2 -
2
r = 6 см,
2
R = 8 см, у колеса 3 -
3
r =12 см, R
3
= 16 см. На ободьях колес расположены точки А,
В и С.
В столбце "Дано" таблицы указан закон движения или закон изменения скорости ведущего звена
механизма, где
1
ϕ
(f)-закон вращения колеса 1, )t(S
4
- закон движения рейки 4,
2
ω
(t)-закон изменения
угловой скорости колеса 2, )t(V
5
-закон изменения скорости груза 5 и т.д. (везде
ϕ
выражено в
радианах, S- в сантиметрах, t- в секундах). Положительное направление для
ϕ
и
ω
против хода часовой
стрелки, для
,S
45
S и
54
V,V -вниз.
Определить в момент времени
1
t =2 с указанные в таблице в столбце "Найти" скорости (V -
линейные,
ω
- угловые) и ускорения ( а-линейные, ε -угловые ) cоответству-ющих точек или тел.
Указания. Задача 2 - на исследование вращательного движения твердого тела вокруг
неподвижной оси. При решении задачи учесть, что, когда два колеса находятся в зацеплении, скорость
точки зацепления каждого колеса одна и та же, а когда два колеса связаны передачей, то скорости всех
точек ремня и, следовательно, точек, лежащих на ободе каждого из этих колес, в данный момент
времени численно одинаковы, при этом считается, что ремень по ободу колес не скользит.
Таблица 2
Найти
Номер условия Дано
Скорости Ускорения
0
1
2
3
4
5
6
7
8
9
S
4
= 4 ( 7t – t
2
)
V
5
= 2 ( t
2
– 3 )
ϕ
1
= 2 t
2
– 9
ω
2
= 7 t – 3 t
2
ϕ
3
= 3 t – t
2
ω
1
= 5 t – 2 t
2
ϕ
2
= 2 ( t
2
– 3 t )
V
4
= 3 t
2
– 8
S
5
= 2 t
2
– 5 t
ω
3
= 8 t – 3 t
2
V
B
, V
C
V
A
, V
C
V
4
, ω
2
V
5
, ω
3
V
4
, ω
1
V
5
, V
B
V
4
, ω
1
V
A
, ω
3
V
4
, ω
2
V
5
, V
B
ε
2
, a
A
, a
5
ε
3
, a
B
, a
4
ε
2
, a
C
, a
5
ε
2
, a
A
, a
4
ε
1
, a
B
, a
4
ε
2
, a
C
, a
4
ε
1
, a
C
, a
5
ε
3
, a
B
, a
5
ε
1
, a
C
, a
4
ε
2
, a
A
, a
4
       Механизм состоит из ступенчатых колес 1-3, находящихся в зацеплении или связанных ременной
передачей, зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес (рис.
2.0 - 2.9, табл. 2). Радиусы ступеней колес равны соответственно: у колеса 1 – r1 = 2см, R 1 = 4 см, у
колеса 2 - r2 = 6 см, R 2 = 8 см, у колеса 3 - r3 =12 см, R3 = 16 см. На ободьях колес расположены точки А,
В и С.
       В столбце "Дано" таблицы указан закон движения или закон изменения скорости ведущего звена
механизма, где ϕ1 (f)-закон вращения колеса 1, S 4 ( t ) - закон движения рейки 4, ω 2 (t)-закон изменения
угловой скорости колеса 2, V5 ( t ) -закон изменения скорости груза 5 и т.д. (везде ϕ выражено в
радианах, S- в сантиметрах, t- в секундах). Положительное направление для ϕ и ω против хода часовой
стрелки, для S 4 , S5 и V4 , V5 -вниз.
       Определить в момент времени t 1 =2 с указанные в таблице в столбце "Найти" скорости (V -
линейные, ω - угловые) и ускорения ( а-линейные, ε -угловые ) cоответству-ющих точек или тел.
       Указания. Задача 2 - на исследование вращательного движения твердого тела вокруг
неподвижной оси. При решении задачи учесть, что, когда два колеса находятся в зацеплении, скорость
точки зацепления каждого колеса одна и та же, а когда два колеса связаны передачей, то скорости всех
точек ремня и, следовательно, точек, лежащих на ободе каждого из этих колес, в данный момент
времени численно одинаковы, при этом считается, что ремень по ободу колес не скользит.


                                                                                                Таблица 2
  Номер условия                 Дано                                 Найти
                                                        Скорости              Ускорения

         0                 S4 = 4 ( 7t – t2 )           VB , VC                ε2 , aA , a5

         1                 V5 = 2 ( t2 – 3 )            VA , VC                ε3 , aB , a4

         2                   ϕ1 = 2 t2 – 9               V4 , ω2               ε2 , aC , a5

         3                  ω2 = 7 t – 3 t2              V5 , ω3               ε2 , aA , a4

         4                   ϕ3 = 3 t – t 2              V4 , ω1               ε1 , aB , a4

         5                  ω1 = 5 t – 2 t2              V5 , VB               ε2 , aC , a4

         6                ϕ2 = 2 ( t 2 – 3 t )           V4 , ω1               ε1 , aC , a5

         7                  V4 = 3 t2 – 8                VA , ω3               ε3 , aB , a5

         8                  S5 = 2 t2 – 5 t              V4 , ω2               ε1 , aC , a4

         9                  ω3 = 8 t – 3 t2              V5 , VB               ε2 , aA , a4




                                                    9