ВУЗ:
Составители:
72 Глава 3. Волноводы с размытой границей
в области Ω
R
, R ≥ R
0
к функциям u и u формулу Грина. Получим
Z
Ω
R
(u∆
u − u∆u)dx =
Z
Γ
R
µ
u
∂
u
∂r
−
u
∂u
∂r
¶
dl
и, следовательно,
Z
Γ
R
µ
u
∂
u
∂r
−
u
∂u
∂r
¶
dl = 0, R ≥ R
0
,
так как k
2
n
2
> β
2
при β ∈ D. Используем условие (3.2) и ортогональ-
ность тригонометрических функций, для любого R ≥ R
0
. Получим:
∞
X
l=−∞
h
H
(1)
l
(χ
∞
R) H
(2)0
l
(χ
∞
R) − H
(2)
l
(χ
∞
R) H
(1)0
l
(χ
∞
R)
i
|a
l
|
2
= 0,
где a
l
— коэффициенты ряда (3.2), в который разлагается функция u.
Хорошо известно (см., напр., [32]), что выражение, стоящее в этой
сумме в квадратных скобках, от l не зависит, а именно:
H
(1)
l
(χ
∞
R) H
(2)0
l
(χ
∞
R) − H
(2)
l
(χ
∞
R) H
(1)0
l
(χ
∞
R) =
4
iπχ
∞
R
,
где l = 0, ±1, ±2, . . . Следовательно, для любого x ∈ R
2
\ Ω
R
0
все ко-
эффициенты a
l
в разложении (3.2) обращаются в нуль. А это значит,
что u = 0 при x ∈ R
2
\Ω
R
0
. Оператор Гельмгольца (3.1) имеет внутри
области Ω
R
0
фундаментальное решение (см., напр., [12]). Обозначим
его через Φ(β; x, y). Используя третью формулу Грина, выражающую
решение уравнения (3.1) в Ω
R
0
через значение решения и его нормаль-
ной производной на Γ
R
0
,
u(x) = −
Z
Γ
R
0
·
u
−
(y)
∂Φ(β; x, y)
∂ν(y)
−
∂u
−
(y)
∂ν(y)
Φ(β; x, y)
¸
dl(y), x ∈ Ω
R
0
,
(3.3)
найдем, что u = 0 при x ∈ Ω
R
0
. Итак, задача (3.1), (3.2) при β ∈ D
имеет только тривиальное решение.
При остальных β ∈ Λ
(1)
0
из условий (3.1), (3.2) и асимптотической
формулы (1.63), с. 24, нетрудно получить равенство
Z
R
2
|∇u|
2
dx +
Z
R
2
(β
2
− k
2
n
2
)|u|
2
dx = 0.
(3.4)
72 Глава 3. Волноводы с размытой границей в области ΩR , R ≥ R0 к функциям u и u формулу Грина. Получим Z Z µ ¶ ∂u ∂u (u∆u − u∆u)dx = u −u dl ∂r ∂r ΩR ΓR и, следовательно, Z µ ¶ ∂u ∂u u −u dl = 0, R ≥ R0 , ∂r ∂r ΓR так как k 2 n2 > β 2 при β ∈ D. Используем условие (3.2) и ортогональ- ность тригонометрических функций, для любого R ≥ R0 . Получим: ∞ h X i (1) (2)0 (2) (1)0 Hl (χ∞ R) Hl (χ∞ R) − Hl (χ∞ R) Hl (χ∞ R) |al |2 = 0, l=−∞ где al — коэффициенты ряда (3.2), в который разлагается функция u. Хорошо известно (см., напр., [32]), что выражение, стоящее в этой сумме в квадратных скобках, от l не зависит, а именно: (1) (2)0 (2) (1)0 4 Hl (χ∞ R) Hl (χ∞ R) − Hl (χ∞ R) Hl (χ∞ R) = , iπχ∞ R где l = 0, ±1, ±2, . . . Следовательно, для любого x ∈ R2 \ ΩR0 все ко- эффициенты al в разложении (3.2) обращаются в нуль. А это значит, что u = 0 при x ∈ R2 \ ΩR0 . Оператор Гельмгольца (3.1) имеет внутри области ΩR0 фундаментальное решение (см., напр., [12]). Обозначим его через Φ(β; x, y). Используя третью формулу Грина, выражающую решение уравнения (3.1) в ΩR0 через значение решения и его нормаль- ной производной на ΓR0 , Z · − ¸ ∂Φ(β; x, y) ∂u (y) u(x) = − u− (y) − Φ(β; x, y) dl(y), x ∈ ΩR0 , ∂ν(y) ∂ν(y) ΓR 0 (3.3) найдем, что u = 0 при x ∈ ΩR0 . Итак, задача (3.1), (3.2) при β ∈ D имеет только тривиальное решение. (1) При остальных β ∈ Λ0 из условий (3.1), (3.2) и асимптотической формулы (1.63), с. 24, нетрудно получить равенство Z Z |∇u| dx + (β 2 − k 2 n2 )|u|2 dx = 0. 2 (3.4) R2 R2
Страницы
- « первая
- ‹ предыдущая
- …
- 70
- 71
- 72
- 73
- 74
- …
- следующая ›
- последняя »