ВУЗ:
Составители:
Рубрика:
либо система (1) приводится к некоторому специальному виду. Особен- ность этого вида заключается в том, что для каждого уравнения имеется неизвестное, которое входит в это уравнение с коэффициентом, не рав- ным нулю, а в остальные уравнения — с коэффициентом 0. Если для ка- ждого уравнения зафиксировано такое неизвестное, то это неизвестное называется базисным, а весь набор базисных неизвестных — базисом не- известных. Остальные неизвестные (если они имеются) называются свободными. Пример: 2 x1 + x 2 - 5 x 3 + x 6 = 7 3 x 1 + 4 x 3 + x 5 - 3 x 6 = -2 (2) x1 - x 3 + x 4 - 2 x 6 = 8 Здесь х2, х4, х5 — базисные неизвестные, х1, х3, х6 — свободные не- известные. Заметим, что коэффициенты при базисных неизвестных в соответствующих уравнениях системы (2) равны 1. В общем случае это необязательно, но можно этого добиться с помощью элементарного преобразования типа 4. Переписав систему (2) в виде: x 2 = 7 - 2 x1 + 5 x 3 - x 6 x 5 = -2 - 3 x 1 - 4 x 3 + 3 x 6 , (3) x 4 = 8 - x1 + x 3 + 2 x 6 (в левых частях системы стоят базисные неизвестные, в правых частях — свободные неизвестные), получаем фактически общее решение. Дейст- вительно, уравнения (3) показывают, что вместо свободных неизвест- ных x 1 , x 3 , x 6 можно подставить любые числа и затем найти из уравне- ний (3) значения базисных неизвестных х2, х4, х5. Например, взяв x 1 = 0, x 3 = 1, x 6 = 2, найдем x 2 = 10, x 4 = 13, x 5 = 0, а значит, получим конкрет- ное (частное) решение x 1 = 0, x 2 = 10, x 3 = 1, x 4 = 13, x 5 = 0, x 6 = 2. Таким образом, запись системы в виде (3) позволяет непосредст- венно получить любое частное решение системы; в этом смысле запись (3) можно считать общим решением. Очевидно, что при наличии хотя бы одного свободного неизвест- ного система имеет бесчисленное множество решений. Если свободных 27
Страницы
- « первая
- ‹ предыдущая
- …
- 25
- 26
- 27
- 28
- 29
- …
- следующая ›
- последняя »