ВУЗ:
Составители:
Рубрика:
49
Конические, цилиндрические
и сферические сечения
Прямой круговой конус является по-
верхностью, имеющей большое коли-
чество разнообразных сечений. Если
секущая плоскость перпендикулярна
оси, то в сечении образуется окруж-
ность. Если секущая плоскость на-
клонна к оси и пересекает обе обра-
зующие, то в сечении будет эллипс.
При пересечении конуса плоскостью,
параллельной оси, в сечении получа-
ется гипербола. Парабола образуется в
сечении конуса, если секущая плос-
кость параллельна образующей. Если
плоскость проходит через вершину, то
сечением конуса является треуголь-
ник. Плоскости, образующие в сече-
нии конуса наиболее простые фигуры
(окружность известного радиуса и
треугольник), при решении различных
геометрических задач используются в
качестве вспомогательных.
В сечении прямого кругового цилинд-
ра образуется окружность, если секу-
щая плоскость перпендикулярна оси
цилиндра. Если секущая плоскость не
перпендикулярна оси, то в сечении
будет эллипс. В сечении цилиндра об-
разуется прямоугольник, если плос-
кость параллельна оси.
Всякое сечение сферы есть окруж-
ность, если направление проецирова-
ния перпендикулярно плоскости сече-
ния, и эллипс, если это условие не
соблюдается.
Конические, цилиндрические и сферические сечения Прямой круговой конус является по- верхностью, имеющей большое коли- чество разнообразных сечений. Если секущая плоскость перпендикулярна оси, то в сечении образуется окруж- ность. Если секущая плоскость на- клонна к оси и пересекает обе обра- зующие, то в сечении будет эллипс. При пересечении конуса плоскостью, параллельной оси, в сечении получа- ется гипербола. Парабола образуется в сечении конуса, если секущая плос- кость параллельна образующей. Если плоскость проходит через вершину, то сечением конуса является треуголь- ник. Плоскости, образующие в сече- нии конуса наиболее простые фигуры (окружность известного радиуса и треугольник), при решении различных геометрических задач используются в качестве вспомогательных. В сечении прямого кругового цилинд- ра образуется окружность, если секу- щая плоскость перпендикулярна оси цилиндра. Если секущая плоскость не перпендикулярна оси, то в сечении будет эллипс. В сечении цилиндра об- разуется прямоугольник, если плос- кость параллельна оси. Всякое сечение сферы есть окруж- ность, если направление проецирова- ния перпендикулярно плоскости сече- ния, и эллипс, если это условие не соблюдается. 49
Страницы
- « первая
- ‹ предыдущая
- …
- 48
- 49
- 50
- 51
- 52
- …
- следующая ›
- последняя »