Элементы теории симметрии. Часть I. Кирсанов А.А. - 199 стр.

UptoLike

Составители: 

Рубрика: 

199Ïðåäñòàâëåíèÿ íåïðåðûâíûõ ãðóïï âðàùåíèÿ SO(2) è SO(3)
Ïóñòü
11
rr R=
, à
22
rr R=
, òîãäà
()( )
( )
()
12121212
,,,,
rrrrrrrr
===
+
RRRR ,
òî åñòü ìàòðèöà R óíèòàðíà
( )
1
=
+
RR è ìîäóëü å¸ îïðåäåëèòåëÿ ðàâåí
åäèíèöå.
7.4.1. Èíôèíèòåçèìàëüíûå îïåðàòîðû
Âûðàæåíèå(7.3.9) äëÿ ïîâîðîòà íà ìàëûé óãîë âîêðóã îñè z ìîæ-
íî ïåðåíåñòè íà ñëó÷àé ïîâîðîòà
()
aR
k
íà ìàëûé óãîë âîêðóã ïðîèç-
âîëüíîé îñè
k
:
()
[]
[ ]
[]
×+=
=×+=×+=
=
q
qq
zyxq
qqk
a
kaaaR
,
,,
rer
rerrkrr
(7.4.2)
ãäå
qq
aka
= . Òàêèì îáðàçîì, òðè èíôèíèòåçèìàëüíûõ îïåðàòîðà, ñî-
îòâåòñòâóþùèå ïàðàìåòðàì
q
a
, ãåîìåòðè÷åñêè ïðåäñòàâëÿþòñÿ êàê
×=
qq
X
e[ . (7.4.3)
Îíè ñîîòâåòñòâóþò áåñêîíå÷íî ìàëûì ïîâîðîòàì âîêðóã îñåé
yx,
è z . Â áàçèñå
zyx
eee ,, ìàòðèöû èíôèíèòåçèìàëüíûõ îïåðàòîðîâ èìå-
þò âèä
=
010
100
000
x
X
,
=
001
000
100
y
X
,
=
000
001
010
z
X
. (7.4.4)
Èñïîëüçóÿ (6.1.1) ïîëó÷èì ïåðåñòàíîâî÷íûå ñîîòíîøåíèÿ äëÿ èí-
ôèíèòåçèìàëüíûõ îïåðàòîðîâ ãðóïïû
()
3SO :
[ ]
zyx
XXX
=
, ,
[ ]
xzy
XXX
=
, ,
[]
yxz
XXX=
, . (7.4.5)
Ïðåäñòàâëåíèÿ íåïðåðûâíûõ ãðóïï âðàùåíèÿ SO(2) è SO(3)                                  199

       Ïóñòü      r1′ = Rr1 , à r2′ = Rr2 , òîãäà
       (r2′ , r1′) = (Rr2 , Rr1 ) = (r2 , R + Rr1 ) = (r2 , r1 ) ,
òî åñòü ìàòðèöà                         (             )
                        R óíèòàðíà R + R = 1 è ìîäóëü å¸ îïðåäåëèòåëÿ ðàâåí
åäèíèöå.

        7.4.1. Èíôèíèòåçèìàëüíûå îïåðàòîðû
       Âûðàæåíèå(7.3.9) äëÿ ïîâîðîòà íà ìàëûé óãîë âîêðóã îñè                      z ìîæ-
íî ïåðåíåñòè íà ñëó÷àé ïîâîðîòà                 Rk (a ) íà ìàëûé óãîë âîêðóã ïðîèç-
âîëüíîé îñè        k:
       Rk (a )r = r + a[k × r ] = r + a          ∑ k [e
                                                q=x, y,z
                                                           q   q   ×r = ]
                                                                                  (7.4.2)
                                                           [
                                        = r + ∑ aq e q × r ,        ]
                                                 q


ãäå   a q = ak q . Òàêèì îáðàçîì, òðè èíôèíèòåçèìàëüíûõ îïåðàòîðà, ñî-
îòâåòñòâóþùèå ïàðàìåòðàì                a q , ãåîìåòðè÷åñêè ïðåäñòàâëÿþòñÿ êàê
       X q = [e q × .                                                             (7.4.3)
       Îíè ñîîòâåòñòâóþò áåñêîíå÷íî ìàëûì ïîâîðîòàì âîêðóã îñåé                        x, y
è   z . Â áàçèñå e x , e y , e z ìàòðèöû èíôèíèòåçèìàëüíûõ îïåðàòîðîâ èìå-
þò âèä

      0 0 0          0 0 1            0 −1 0
               X =  0 0 0                 
X x =  0 0 − 1 , y             , X z =  1 0 0  . (7.4.4)
                       −1 0 0
      0 1 0                          0 0 0
                                              
       Èñïîëüçóÿ (6.1.1) ïîëó÷èì ïåðåñòàíîâî÷íûå ñîîòíîøåíèÿ äëÿ èí-
ôèíèòåçèìàëüíûõ îïåðàòîðîâ ãðóïïû                      SO(3):
       [X   x       ]
                ,Xy = Xz,     [X   y        ]
                                       ,Xz = Xx,           [X z , X x ] = X y .   (7.4.5)