ВУЗ:
Составители:
Рубрика:
57Êîíñòðóêöèè íàä ïðîñòðàíñòâàìè è îïåðàòîðàìè
òî åñòü, ÷òîáû ñëîæèòü âåêòîðû, íàäî ñëîæèòü èõ êîìïîíåíòû â êàæäîì
()
i
nC
;
ss
x...xx...x
λ⊕⊕λ=
⊕⊕λ
11
, (2.4.3)
òî åñòü, ÷òîáû óìíîæèòü âåêòîð íà ÷èñëî
λ
, íàäî óìíîæèòü íà ýòî ÷èñ-
ëî âñå åãî êîìïîíåíòû;
() ()
s
nC
ss
nC
ss
yx...yxy...yx...x
++
=
⊕⊕⊕⊕
1
1111
, (2.4.4)
òî åñòü, ÷òîáû ïåðåìíîæèòü âåêòîðû, íàäî ñêàëÿðíî ïåðåìíîæèòü èõ
ñîîòâåòñòâóþùèå êîìïîíåíòû è ñëîæèòü ïîëó÷åííûå ÷èñëà.
Âûðàæåíèÿ (2.4.2) (2.4.4) ïîêàçûâàþò, ÷òî äåéñòâèÿ íàä âåêòî-
ðàìè â
C
ïîëíîñòüþ ñâîäÿòñÿ ê äåéñòâèÿì íàä èõ êîìïîíåíòàìè â ñîîò-
âåòñòâóþùèõ ñëàãàåìûõ ïðîñòðàíñòâàõ
()
i
nC
.
C
íàçûâàåòñÿ îðòîãî-
íàëüíîé ñóììîé ïðîñòðàíñòâ
()() ()
s
nC,...,nC,nC
21
.
Îðòîãîíàëüíûå ñóììû ïðîñòðàíñòâ ìîæíî ðàññìàòðèâàòü ñ äâóõ
òî÷åê: ìîæíî ñíà÷àëà çàäàâàòü ïðîñòðàíñòâà
()() ()
s
nC,...,nC,nC
21
íå-
çàâèñèìî äðóã îò äðóãà è ñòðîèòü èç íèõ ïðîñòðàíñòâî
C
ñ ïîìîùüþ
ôîðìàëüíûõ ñóìì (2.4.1), ëèáî ñ÷èòàòü, ÷òî âñå
()
i
nC
óæå ëåæàò â íåêî-
òîðîì ïðîñòðàíñòâå
C
, è ñòðîèòü ðàçëîæåíèå âåêòîðîâ
C
íà ñëàãàå-
ìûå, ëåæàùèå â
()
i
nC
, s,...,,i 21= .
Íàéä¸ì áàçèñ è ïîäñ÷èòàåì ðàçìåðíîñòü ïðîñòðàíñòâà
C
. Äëÿ
ýòîãî â êàæäîì
()
i
nC
ïîñòðîèì áàçèñ
i
n
ii
e,...,e
1
; òîãäà âåêòîðû
s
n
ss
n
e,...,e,...,e,...,e
1
1
1
1
1
(2.4.5)
ñîñòàâëÿþò áàçèñ ïðîñòðàíñòâà
C
, à åãî ðàçìåðíîñòü ðàâíà ñóììå ðàç-
ìåðíîñòåé ïðîñòðàíñòâ
()
i
nC
, òî åñòü
()
s
n...nCC ++=
1
. (2.4.6)
Êîíñòðóêöèè íàä ïðîñòðàíñòâàìè è îïåðàòîðàìè 57
òî åñòü, ÷òîáû ñëîæèòü âåêòîðû, íàäî ñëîæèòü èõ êîìïîíåíòû â êàæäîì C (ni );
λ x ⊕ ... ⊕ x = λ x⊕ ... ⊕ λ x ,
1 s 1 s
(2.4.3)
òî åñòü, ÷òîáû óìíîæèòü âåêòîð íà ÷èñëî λ , íàäî óìíîæèòü íà ýòî ÷èñ-
ëî âñå åãî êîìïîíåíòû;
1 s 1 s
1 1 s s
x ⊕ ... ⊕ x y ⊕ ... ⊕ y = x y + ... + x y , (2.4.4)
C (n1 ) C (ns )
òî åñòü, ÷òîáû ïåðåìíîæèòü âåêòîðû, íàäî ñêàëÿðíî ïåðåìíîæèòü èõ
ñîîòâåòñòâóþùèå êîìïîíåíòû è ñëîæèòü ïîëó÷åííûå ÷èñëà.
Âûðàæåíèÿ (2.4.2) (2.4.4) ïîêàçûâàþò, ÷òî äåéñòâèÿ íàä âåêòî-
ðàìè â C ïîëíîñòüþ ñâîäÿòñÿ ê äåéñòâèÿì íàä èõ êîìïîíåíòàìè â ñîîò-
âåòñòâóþùèõ ñëàãàåìûõ ïðîñòðàíñòâàõ C (ni ) . C íàçûâàåòñÿ îðòîãî-
íàëüíîé ñóììîé ïðîñòðàíñòâ C (n1 ),C (n2 ),...,C (n s ) .
Îðòîãîíàëüíûå ñóììû ïðîñòðàíñòâ ìîæíî ðàññìàòðèâàòü ñ äâóõ
òî÷åê: ìîæíî ñíà÷àëà çàäàâàòü ïðîñòðàíñòâà C (n1 ),C (n 2 ),..., C (n s ) íå-
çàâèñèìî äðóã îò äðóãà è ñòðîèòü èç íèõ ïðîñòðàíñòâî C ñ ïîìîùüþ
ôîðìàëüíûõ ñóìì (2.4.1), ëèáî ñ÷èòàòü, ÷òî âñå C (ni ) óæå ëåæàò â íåêî-
òîðîì ïðîñòðàíñòâå C , è ñòðîèòü ðàçëîæåíèå âåêòîðîâ C íà ñëàãàå-
ìûå, ëåæàùèå â C (ni ) , i = 1,2 ,..., s .
Íàéä¸ì áàçèñ è ïîäñ÷èòàåì ðàçìåðíîñòü ïðîñòðàíñòâà C . Äëÿ
C (ni ) ïîñòðîèì áàçèñ e1 ,..., e ni ; òîãäà âåêòîðû
i i
ýòîãî â êàæäîì
1 1 s s
e1 ,..., e n1 ,..., e1 ,..., e ns (2.4.5)
ñîñòàâëÿþò áàçèñ ïðîñòðàíñòâà C , à åãî ðàçìåðíîñòü ðàâíà ñóììå ðàç-
ìåðíîñòåé ïðîñòðàíñòâ C (ni ) , òî åñòü
C = C (n1 + ... + n s ) . (2.4.6)
Страницы
- « первая
- ‹ предыдущая
- …
- 55
- 56
- 57
- 58
- 59
- …
- следующая ›
- последняя »
