Введение в аналитическую динамику. Кирсанов А.А. - 274 стр.

UptoLike

Составители: 

Рубрика: 

274
Ïðèëîæåíèÿ
Áóäåì ãîâîðèòü, ÷òî ïðè
()
tx ôóíêöèîíàë ïðèíèìàåò ñòàöèîíàð-
íîå çíà÷åíèå, åñëè
=
α
1
0
0,,
t
t
dtt
dt
xd
xf
, (Ï3.6)
êîãäà
0=α
.
Ïåðåïèøåì (Ï3.6) ñ ó÷¸òîì (Ï3.4) è (Ï3.3)
()
=
α+α+
α
=
=
α+α+
α
1
0
1
0
,,
,,
t
t
t
t
dttgx
dt
dg
pf
dtt
dt
dg
ptgxf
+
=
1
0
t
t
dt
x
f
g
p
f
dt
dg
. (Ï3.7)
Çäåñü
0
+
+
=
α
+
α
+
α
=
α
t
f
g
x
f
dt
dg
p
ft
t
fx
x
fp
p
ff
.
Èíòåãðèðóÿ ïåðâîå ñëàãàåìîå â (Ï3.7) ïî ÷àñòÿì ïîëó÷èì
0
1
0
1
0
=
+
=
α
t
t
t
t
dt
p
f
dt
d
x
f
g
p
f
g
S
. (Ï3.8)
Çäåñü ìû ïðèíÿëè
dgdt
dt
dg
du == ,
gu =
,
p
f
v
=
, dt
p
f
dt
d
p
f
ddv
=
= .
274                                                         Ïðèëîæåíèÿ

     Áóäåì ãîâîðèòü, ÷òî ïðè        x (t ) ôóíêöèîíàë ïðèíèìàåò ñòàöèîíàð-
íîå çíà÷åíèå, åñëè

       ∂ 1  dx ′ 
             t


      ∂α t∫0 
            f  x ′,   , t  dt = 0 ,                             (Ï3.6)
                     dt 
êîãäà α = 0 .
     Ïåðåïèøåì (Ï3.6) ñ ó÷¸òîì (Ï3.4) è (Ï3.3)

       ∂ 1 
             t
                                 dg 
         ∫ f  x + αg (t ), p + α , t dt =
      ∂α t0                     dt 
            ∂ 
        t1
                       dg            
      =∫      f  p + α , x + αg , t dt =
        t0
           ∂α         dt            

            dg ∂f    ∂f 
        t1

      = ∫        + g dt .                                     (Ï3.7)
        t0 
             dt ∂p    ∂x 
      Çäåñü
      ∂f ∂f ∂p ∂f ∂x ∂f ∂t ∂f dg ∂f     ∂f
        =     +     +     =     +   ⋅g+    ⋅0.
      ∂α ∂p ∂α ∂x ∂α ∂t ∂α ∂p dt ∂x     ∂t
      Èíòåãðèðóÿ ïåðâîå ñëàãàåìîå â (Ï3.7) ïî ÷àñòÿì ïîëó÷èì
                         t1
      ∂S  ∂f          ∂f d ∂f 
                    1         t

        =  g  + ∫ g  −        dt = 0 .                       (Ï3.8)
      ∂α  ∂p  t0 t0  ∂x dt ∂p 
      Çäåñü ìû ïðèíÿëè
                  dg
      du =           dt = dg , u = g ,
                  dt
                 ∂f               ∂f  d ∂f
      v=            ,    dv = d      =    dt .
                 ∂p               ∂p  dt ∂p