Введение в аналитическую динамику. Кирсанов А.А. - 279 стр.

UptoLike

Составители: 

Рубрика: 

279
4. Ïðèíöèï Ãàìèëüòîíà
Âîñïîëüçóåìñÿ ïåðâîé ôîðìîé îñíîâíîãî óðàâíåíèÿ
()
=
=δ
N
r
rrrr
xXxm
1
0
&&
. (2.1.6)
Èíòåãðèðóÿ ýòî óðàâíåíèå ïî âðåìåíè îò
0
t äî
1
t , ïîëó÷èì
==
δ=δ
1
0
1
0
11
t
t
N
r
rr
t
t
N
r
rrr
dtxXdtxxm
&&
. (Ï3.26)
Ïðîèíòåãðèðóåì ëåâóþ ÷àñòü (Ï3.26) ïî ÷àñòÿì
===
=δ
δ=δ
1
0
1
0
1
0
111
t
t
N
r
rrr
t
t
N
r
rrr
t
t
N
r
rrr
dtx
dt
d
xmxxmdtxxm
&&&&
==
δ
δ=
1
0
1
0
11
t
t
N
r
rrr
t
t
N
r
rrr
dtxxmxxm
&&&
. (Ï3.27)
Ó÷èòûâàÿ, ÷òî
δ=δ
==
N
r
rr
N
r
rrr
xmxxm
1
2
1
2
1
&&&
, (Ï3.28)
ïåðåïèøåì (Ï3.27) â âèäå
=
δ
δ
==
dtxmxxm
t
t
N
r
rr
t
t
N
r
rrr
1
0
1
0
1
2
1
2
1
&&
=
δ
1
0
1
t
t
N
r
rr
dtxX
. (Ï3.29)
Åñëè 0=δ
r
x
â òî÷êàõ
0
t è
1
t , òî îêîí÷àòåëüíî ìîæíî çàïèñàòü
0
2
1
1
0
11
2
=
δ+
δδ
==
dtxXxmS
t
t
N
r
rr
N
r
rr
&
. (Ï3.30)
Ìû ïîëó÷èëè íàèáîëåå îáùóþ ôîðìó ïðèíöèïà Ãàìèëüòîíà êëàñ-
                                                                                  279
     4. Ïðèíöèï Ãàìèëüòîíà

    Âîñïîëüçóåìñÿ ïåðâîé ôîðìîé îñíîâíîãî óðàâíåíèÿ
      N

     ∑ (m &x&
     r =1
               r   r   − X r )δx r = 0 .                                     (2.1.6)


    Èíòåãðèðóÿ ýòî óðàâíåíèå ïî âðåìåíè îò                   t0 äî t1 , ïîëó÷èì
     t1 N                             t1 N

     ∫ ∑ mr x&&r δxr dt = ∫ ∑ X r δxr dt .
     t0 r =1                          t0 r =1
                                                                             (Ï3.26)

    Ïðîèíòåãðèðóåì ëåâóþ ÷àñòü (Ï3.26) ïî ÷àñòÿì
                                                 t1
                              N            
     t1 N                                         1 N t
                                                                d
     ∫t ∑r =1
              m  &
                 x&
                r r δx r dt = ∑ r r r 
                               r =1
                                     m &
                                       x δx     − ∫ ∑
                                             t0 t0 r =1
                                                         mr x& r δx r dt =
                                                                dt
       0


                                 t1
       N                   1 N          t

     = ∑ mr x& r δx r  − ∫ ∑ mr x& r δx& r dt .                            (Ï3.27)
        r =1           t0 t0 r =1
    Ó÷èòûâàÿ, ÷òî
      N
                         1 N              
     ∑
     r =1
          m  &
             x
            r r δx& r = δ   ∑
                          2 r =1
                                  mr x& r2  ,
                                           
                                                                             (Ï3.28)

ïåðåïèøåì (Ï3.27) â âèäå
                            t1
     N                    1 N         
                         1            t                   t1 N

     ∑ r r r 
            m &
              x δx     − ∫ δ ∑ mr x& r2 dt =            ∫ ∑ X δx dt .
                                                                    r   r    (Ï3.29)
      r =1         t0 t0  2 r =1                      t0 r =1


    Åñëè       δx r = 0 â òî÷êàõ t0 è t1 , òî îêîí÷àòåëüíî ìîæíî çàïèñàòü
          t1
              1 N         N            
     δS ≡ ∫ δ ∑ mr x& r2  + ∑ X r δx r dt = 0 .                          (Ï3.30)
          t0              r =1         
                 2 r =1
    Ìû ïîëó÷èëè íàèáîëåå îáùóþ ôîðìó ïðèíöèïà Ãàìèëüòîíà êëàñ-