ВУЗ:
Составители:
Рубрика:
15
5. На оси  абсцисс  найти  точку , расстояние  которой   от  прямой   
815100
xy
++=
равно 1. 
6. Написать  уравнение  прямой , проходящей   через   точку  пересечения  прямых  
53100,150
xyxy
++=+−=
 и через   начало   координат.  
7. Написать  уравнение  прямой , проходящей   через   точку  пересечения  прямых 
230,2340
xyxy
++=++=
 и параллельную  прямой   
580.
xy
+=
8. Написать  уравнение  прямой , проходящей   через   точку  пересечения  прямых  
210,220
xyxy
++=++=
 и образующую  угол 135
0
 с осью   абсцисс. 
9.  Показать,  что   треугольник  со   сторонами,  лежащими  на  прямых,  заданных 
общими  уравнениями  
310;310;100
xyxyxy
++=++=−−=
,  равнобед -
ренный. Найти  угол при  его   вершине. 
10.  Вычислить  расстояние  между   двумя  параллельными  прямыми 
34100
xy
−−=
 и 
6850.
xy
−+=
11. Даны  вершины  треугольника  
(
)
(
)
(
)
:2;1,1;4,7;0.
ABCABC
−−
 Определить 
координаты   точки пересечения  медиан   треугольника. Сделать  чертеж .  
12. Даны  вершины  треугольника  
(
)
(
)
3;8,10;2
AB
  и  точка пересечения  медиан  
(
)
1;1.
M
 Найти  координаты   третьей   вершины . Сделать  чертеж .  
13. Даны  координаты   вершин   треугольника  
(
)
(
)
(
)
3;5,3;3,1;2
ABC
−−−−
. Най -
ти  длину  биссектрисы   его   внутреннего   угла  при  вершине 
.
A
 Сделать  чертеж .  
14. Найти  площадь треугольника с вершинами 
(
)
(
)
(
)
2;4,2;8,10;2.
ABC
−−
15.  Даны   координаты   вершин   треугольника  
(
)
(
)
(
)
2;7,10;2,8;12.
ABC
−−−
Найти:  1) длину  стороны  
;
AB
  2) внутренний   угол  
;
A
  3) уравнение  медианы   
;
CM
  4) уравнение  высоты    
;
CK
  5) точку  пересечения  высот  
;
F
  6) площадь 
треугольника. Сделать  чертеж .  
16.  Составить  уравнения  высот  треугольника,  зная  уравнения  его   сторон: 
230,570,3260.
xyxyx
−+=+−=−+=
 Сделать  чертеж .  
17.  В   треугольнике  известны :  сторона 
:4120;
ABxy
+−=
  высота  
:54150;
BHxy
−−=
  высота  
:2290.
AKxy
+−=
  Написать  уравнения  двух 
других   сторон  и  третьей   высоты . Сделать  чертеж .  
18. Написать  уравнение  прямой , проходящей   через   точку   пересечения  прямых 
730,3540
xyxy
−+=+−=
 и через   точку   
(
)
2;1.
A
−
19.  Даны   уравнения  двух  смежных  сторон  параллелограмма:  
10,20
xyxy
−−=−=
 и точка  пересечения  его   диагоналей  
(
)
3;1.
M
−
 Написать 
уравнения  двух других   сторон  параллелограмма. 
20.  Найти  центр   окружности,  описанной   около   треугольника  с  вершинами  в 
точках   
(
)
(
)
(
)
2;3,0;3,5;2.
ABC
−−
21.  Составить  уравнения  сторон  треугольника,  зная  одну   из   его   вершин   
(
)
3;4
A
−
 и уравнения  двух его   высот:  
7210
xy
−−=
  и  
2760.
xy
−−=
 Сделать 
чертеж .  
15 5. На оси абсцисс найти точку, расстояние которой от прямой 8 x +15 y +10 =0 равно 1. 6. Написать уравнение прямой, проходящей через точку пересечения прямых 5 x +3 y +10 =0, x +y −15 =0 и через начало координат. 7. Написать уравнение прямой, проходящей через точку пересечения прямых x +2 y +3 =0, 2 x +3 y +4 =0 и параллельную прямой 5 x +8 y =0. 8. Написать уравнение прямой, проходящей через точку пересечения прямых x +2 y +1 =0, 2 x +y +2 =0 и образующую угол 1350 с осью абсцисс. 9. Показать, что треугольник со сторонами, лежащими на прямых, заданных общими уравнениями x + 3 y +1 =0; 3 x +y +1 =0; x −y −10 =0 , равнобед- ренный. Найти угол при его вершине. 10. Вычислить расстояние между двумя параллельными прямыми 3x −4 y −10 =0 и 6 x −8 y +5 =0. 11. Даны вершины треугольника ABC : A ( −2; −1), B (1;4 ), C (7;0 ). Определить координаты точки пересечения медиан треугольника. Сделать чертеж. 12. Даны вершины треугольника A (3;8 ), B (10;2 ) и точка пересечения медиан M (1;1). Найти координаты третьей вершины. Сделать чертеж. 13. Даны координаты вершин треугольника A (3; −5 ), B ( −3;3), C ( −1; −2 ) . Най- ти длину биссектрисы его внутреннего угла при вершине A. Сделать чертеж. 14. Найти площадь треугольника с вершинами A ( −2; −4 ), B ( 2;8 ), C (10;2 ). 15. Даны координаты вершин треугольника A ( −2;7 ), B (10; −2 ), C (8; −12 ). Найти: 1) длину стороны AB; 2) внутренний угол A; 3) уравнение медианы CM ; 4) уравнение высоты CK ; 5) точку пересечения высот F ; 6) площадь треугольника. Сделать чертеж. 16. Составить уравнения высот треугольника, зная уравнения его сторон: 2 x −y +3 =0, x +5 y −7 =0, 3x −2 +6 =0. Сделать чертеж. 17. В треугольнике известны: сторона AB : 4 x +y −12 =0; высота BH : 5 x −4 y −15 =0; высота AK : 2 x +2 y −9 =0. Написать уравнения двух других сторон и третьей высоты. Сделать чертеж. 18. Написать уравнение прямой, проходящей через точку пересечения прямых 7 x −y +3 =0, 3x +5 y −4 =0 и через точку A ( 2; −1). 19. Даны уравнения двух смежных сторон параллелограмма: x −y −1 =0, x −2 y =0 и точка пересечения его диагоналей M (3; −1). Написать уравнения двух других сторон параллелограмма. 20. Найти центр окружности, описанной около треугольника с вершинами в точках A ( 2;3), B (0; −3), C (5; −2 ). 21. Составить уравнения сторон треугольника, зная одну из его вершин A (3; −4 ) и уравнения двух его высот: 7 x −2 y −1 =0 и 2 x −7 y −6 =0. Сделать чертеж.
Страницы
- « первая
 - ‹ предыдущая
 - …
 - 13
 - 14
 - 15
 - 16
 - 17
 - …
 - следующая ›
 - последняя »
 
