ВУЗ:
Составители:
Рубрика:
n = 1
(x + y)
1
=
1
X
k=0
C
k
n
x
n−k
y
k
= C
0
1
x
1
y
0
+ C
1
1
x
0
y
1
= x + y.
n P (n) ⇒ P (n + 1)
P (n) = (x + y)
n
=
n
X
k=0
C
k
n
x
n−k
y
k
(x + y)
n+1
= (x + y)(x + y)
n
P (n)
= (x + y)
n
X
k=0
C
k
n
x
n−k
y
k
=
=
n
X
k=0
C
k
n
x
n+1−k
y
k
+
n
X
k=0
C
k
n
x
n−k
y
k+1
= ∗
k + 1 = k
0
k
0
n + 1
∗ =
n
X
k=0
C
k
n
x
n+1−k
y
k
+
n+1
X
k
0
=1
C
k
0
−1
n
x
n+1−k
0
y
k
0
= ∗
k
0
k
k = 0
k
0
= n + 1
∗ = x
n+1
+
n
X
k=1
C
k
n
x
n+1−k
y
k
+
n
X
k=1
C
k−1
n
x
n+1−k
y
k
+ y
n+1
= ∗
C
0
n+1
=
1 C
n+1
n+1
= 1 C
k
n
+ C
k−1
n
= C
k
n+1
∗ = x
n+1
+
n
X
k=1
(C
k
n
+ C
k−1
n
)x
n+1−k
y
k
+ y
n+1
=
= C
0
n+1
x
n+1
y
0
+
n
X
k=1
C
k
n+1
x
n+1−k
y
k
+ C
n+1
n+1
x
0
y
n+1
=
=
n
X
k=0
C
k
n+1
x
n+1−k
y
k
.
Ëåêöèÿ 2 15 Ä î ê à ç à ò å ë ü ñ ò â î. Ïðè n = 1 èìååì î÷åâèäíîå ðàâåíñòâî: 1 X (x + y)1 = Cnk xn−k y k = C10 x1 y 0 + C11 x0 y 1 = x + y. k=0 Äîêàæåì òåïåðü ïðè ëþáîì n âåðíîñòü èìïëèêàöèè P (n) ⇒ P (n + 1), ãäå n X P (n) = (x + y)n = Cnk xn−k y k k=0 Èìååì, åñëè P (n) n X n+1 n âåðíî (x + y) = (x + y)(x + y) = (x + y) Cnk xn−k y k = k=0 n X n X = Cnk xn+1−k y k + Cnk xn−k y k+1 = ∗ k=0 k=0 Âî âòîðîé ñóììå çàìåíèì èíäåêñ ñóììèðîâàíèÿ ïî ôîðìóëå k + 1 = k 0 . Òîãäà k 0 áóäåò èçìåíÿòüñÿ îò 1 äî n + 1: n X n+1 X 0 0 0 ∗= Cnk xn+1−k y k + Cnk −1 xn+1−k y k = ∗ k=0 k0 =1 Òåïåðü îïÿòü âî âòîðîé ñóììå âìåñòî k 0 áóäåì ïèñàòü k (îò ýòîãî íè÷åãî íå èçìåíèòñÿ!) è â ïåðâîé ñóììå âûäåëèì ïåðâîå ñëàãàåìîå (ïðè k = 0), à âî âòîðîé ïîñëåäíåå (ïðè k 0 = n + 1): n X n X ∗ = xn+1 + Cnk xn+1−k y k + Cnk−1 xn+1−k y k + y n+1 = ∗ k=1 k=1 0 Îáúåäèíèì òåïåðü äâå ñóììû â îäíó è âîñïîëüçóåìñÿ ðàâåíñòâàìè: Cn+1 = n+1 k k−1 k 1, Cn+1 = 1 è Cn + Cn = Cn+1 : n X ∗ = xn+1 + (Cnk + Cnk−1 )xn+1−k y k + y n+1 = k=1 n X 0 n+1 0 n+1 = Cn+1 xn+1 y 0 + k Cn+1 xn+1−k y k + Cn+1 x y = k=1 n X k = Cn+1 xn+1−k y k . k=0
Страницы
- « первая
- ‹ предыдущая
- …
- 13
- 14
- 15
- 16
- 17
- …
- следующая ›
- последняя »