Введение в математический анализ. Клевчихин Ю.А. - 60 стр.

UptoLike

Составители: 

Рубрика: 

e
e
x
n
=
³
1 +
1
n
´
n
x
n
=
³
1 +
1
n
´
n
= 1 + C
1
n
1
n
+ C
2
n
1
n
2
+ ··· + C
k
n
1
n
k
+ ··· + C
n
n
1
n
n
=
n
X
k=0
C
k
n
1
n
k
.
C
k
n
1
n
k
C
k
n
1
n
k
=
n(n 1) . . . (n k + 1)
k!
1
n
k
=
k
z }| {
n(n 1) . . . (n k + 1)
n · n . . . n
| {z }
k
1
k!
=
=
³
1
1
n
´³
1
2
n
´
. . .
³
1
k 1
n
´
| {z }
(k1)
1
k!
x
n
= 1 +
n
X
k=1
³
1
1
n
´³
1
2
n
´
. . .
³
1
k 1
n
´
1
k!
x
n+1
= 1 +
n+1
X
k=1
³
1
1
n + 1
´³
1
2
n + 1
´
. . .
³
1
k 1
n + 1
´
1
k!
x
n
< x
n+1
(x
n
)
x
n
= 1+
n
X
k=1
³
1
1
n
´³
1
2
n
´
. . .
³
1
k 1
n
´
1
k!
< 1+
n
X
k=1
1
k!
< 1+
n
X
k=1
1
2
k1
< 3
60                                                                Êëåâ÷èõèí Þ.À


   Òåîðåìà. Îïðåäåëåíèå ÷èñëà e êîððåêòíî.
   Ä î ê à ç à ò å ë ü ñ ò â î. Íàäî äîêàçàòü, ÷òî ïðåäåë â ïðàâîé ÷àñòè
ñóùåñòâóåò, â ýòîì ñëó÷àå ìû äåéñòâèòåëüíî èìååì ïðàâî êàê-íèáóäü åãî
îáîçíà÷èòü. Áóêâîé e åãî îáîçíà÷àþò â ÷åñòü Ë. Ýéëåðà (L. Euler), êîòîðûé
ââåë åãî â ìàòåìàòèêó.
                                                      ³    1 ´n
   Äîñòàòî÷íî ïîêàçàòü, ÷òî ïîñëåäîâàòåëüíîñòü xn = 1 +          âîçðàñòà-
                                                           n
åò è îãðàíè÷åíà ñâåðõó. Ñíà÷àëà äîêàæåì, ÷òî îíà âîçðàñòàåò. Äëÿ ýòîãî
ïðåäñòàâèì îáùèé ÷ëåí ïîñëåäîâàòåëüíîñòè â áîëåå óäîáíîì âèäå:
    ³    1 ´n          1      1               1               1
                                                                  n
                                                                  X     1
xn = 1 +      = 1 + Cn1 + Cn2 2 + · · · + Cnk k + · · · + Cnn n =   Cnk k .
         n             n     n               n               n         n
                                                                            k=0


Çàìåòèì, ÷òî îáùèé ÷ëåí ýòîé ñóììû Cnk n1k ìîæíî ïðåîáðàçîâàòü ñëåäó-
þùèì îáðàçîì:
                                                       kñîìíîæèòåëåé
                                           z           }|           {
      k 1   n(n − 1) . . . (n − k + 1) 1   n(n − 1) . . . (n − k + 1) 1
     Cn k =                              =                               =
       n                k!            nk         n
                                                 | · n{z. . . n}      k!
                                                       kñîìíîæèòåëåé
                         ³  1 ´³    2´     ³    k − 1´ 1
                       = 1−      1−     ... 1 −
                        |   n       n{z           n } k!
                                   (k−1)ñîìíîæèòåëü


Òîãäà,
                             n ³
                             X          1 ´³    2´    ³    k − 1´ 1
                xn = 1 +           1−        1−    ... 1 −
                                        n       n            n   k!
                             k=1
                        X³
                        n+1
                                    1 ´³     2 ´ ³      k − 1´ 1
          xn+1 = 1 +          1−         1−     ... 1 −
                                   n+1      n+1         n + 1 k!
                        k=1

Âèäèì, ÷òî ñîìíîæèòåëè âåðõíåé ñóììû ìåíüøå ñîîòâåòñòâóþùèõ ñîìíî-
æèòåëåé íèæíåé ñóììû è åùå íèæíÿÿ ñóììà èìååò íà îäíî ñëàãàåìîå
áîëüøå, ïîýòîìó xn < xn+1 .
   Äëÿ äîêàçàòåëüñòâà îãðàíè÷åííîñòè ñâåðõó ïîñëåäîâàòåëüíîñòè (xn )
çàìåòèì, ÷òî
          n ³
                     1 ´³   2´      ³   k − 1´ 1
          X                                           X 1  n    X 1     n
xn = 1+         1−       1−    . . . 1−          < 1+      < 1+       <3
                     n      n             n   k!        k!       2k−1
          k=1                                             k=1           k=1