ВУЗ:
Составители:
Рубрика:
∃y ∀x P (x, y),
P (x, M) =
x E x 6 M
x ∈ E ⇒ x 6 M
∃M ∀x P (x, M) M
x E M
E
E
E ∀x ∃M P (x, y)
x E M
x M = x + 1
¬(∀x P (x))
x P (x) x
P (x) x ¬P (x)
¬(∀x P (x)) = (∃x ¬P (x))
8 Êëåâ÷èõèí Þ.À îçíà÷àåò: äëÿ ëþáîãî ìàëü÷èêà ñóùåñòâóåò äåâî÷êà, â êîòîðóþ îí âëþá- ëåí. Îáðàòèì âíèìàíèå, ÷òî åñëè ïîìåíÿòü ìåñòàìè êâàíòîðû1 ∃y ∀x P (x, y), òî ïîëó÷èòñÿ ñîâåðøåííî èíîå ïî ñìûñëó (à, çíà÷èò, è ïî èñòèííîñòè) âû- ñêàçûâàíèå: ñóùåñòâóåò äåâî÷êà, â êîòîðóþ âëþáëåí êàæäûé ìàëü÷èê. Ïîðÿäîê ñëåäîâàíèÿ êâàíòîðîâ âåñüìà ñóùåñòâåí! Î÷åíü íå ðåêîìåíäóåò- ñÿ åãî ïóòàòü (îñîáåííî ïðè îòâåòå íà ýêçàìåíàõ). Èñòèííîñòü ïîñëåäíèõ äâóõ âûñêàçûâàíèé ìû çäåñü îñîáî îáñóæäàòü íå áóäåì, ïîñêîëüêó ê ìàòåìàòèêå ýòî íå èìååò îòíîøåíèÿ. Õîòÿ ìîæíî äîâîëüíî óâåðåííî ñêàçàòü, ÷òî â ïîëíîé îáùíîñòè îáà ýòè óòâåðæäåíèÿ ñêîðåå âñåãî ëîæíû (êàæäûé ìàëü÷èê âëþáëåí?). Åñëè æå îãðàíè÷èòüñÿ ìàëü÷èêàìè è äåâî÷êàìè, ñêàæåì, èç îäíîãî è òîãî æå êëàññà (íà÷èíàÿ ñ 9-ãî), òî ïåðâîå èç íèõ ìîæåò îêàçàòüñÿ âåðíûì, à ìîæåò (ãîðàçäî ðåæå) âåðíûì áóäåò è âòîðîå. Îòìåòèì åùå, ÷òî åñëè âåðíî âòîðîå óòâåðæäåíèå, òî âåðíî è ïåðâîå.  òàêèõ ñëó÷àÿõ ãîâîðÿò, ÷òî âòîðîå óòâåðæäåíèå áîëåå ñèëüíîå. 3) Ïðèâåäåì åùå ïðèìåð, íî óæå èç ìàòåìàòèêè. Ïóñòü P (x, M ) =Åñëè x ïðèíàäëåæèò ìíîæåñòâó E , òî x 6 M (áîëåå êîðîòêî ýòî ìîæíî çàïè- ñàòü òàê: x ∈ E ⇒ x 6 M . Òîãäà ∃M ∀x P (x, M ) îçíà÷àåò, ÷òî ñóùåñòâóåò òàêîå ÷èñëî M , ÷òî âñÿ- êîå ÷èñëî x èç E ìåíüøå ýòîãî M . Ýòî îïðåäåëåíèå îãðàíè÷åííîãî ñâåðõó ìíîæåñòâà îäíîãî èç îñíîâíûõ ïîíÿòèé, èñïîëüçóåìûõ â àíàëèçå. Ìíî- æåñòâà E , äëÿ êîòîðûõ ýòî óòâåðæäåíèå èñòèííî, íàçûâàþò îãðàíè÷åííû- ìè ñâåðõó, à ìíîæåñòâà E , äëÿ êîòîðûõ îíî ëîæíî íàçûâàþò íåîãðàíè- ÷åííûìè ñâåðõó.  äàëüíåéøåì ìû åùå âñòðåòèìñÿ ñ ýòèì îïðåäåëåíèåì. Îòìåòèì òîëüêî, ÷òî åñëè çäåñü ïîìåíÿòü ìåñòàìè êâàíòîðû, òî ïîëó÷èòñÿ òîæäåñòâåííî èñòèííîå âûñêàçûâàíèå, ò.å. âûïîëíÿþùååñÿ äëÿ âñåõ (÷è- ñëîâûõ) ìíîæåñòâ E è ïîýòîìó íè÷åãî íå îïðåäåëÿþùåå: ∀x ∃M P (x, y)= äëÿ ëþáîãî ÷èñëà x èç ìíîæåñòâà E ñóùåñòâóåò ÷èñëî M áîëüøåå ýòîãî x (êîíå÷íî, íàïðèìåð, M = x + 1). Ñîâåðøåííî íåîáõîäèìûì ÿâëÿåòñÿ óìåíèå ñòðîèòü îòðèöàíèå âûñêà- çûâàíèé, ñîäåðæàùèõ êâàíòîðû. Íàïðèìåð, ¬(∀x P (x)) îçíà÷àåò: íå äëÿ ëþáîãî x P (x) âåðíî. Î÷åâèäíî, ýòî òî æå ñàìîå, ÷òî ñóùåñòâóåò x äëÿ êîòîðîãî P (x) ëîæíî èëè ñóùåñòâóåò x äëÿ êîòîðîãî ¬P (x) âåðíî. Òî åñòü èìååò ìåñòî ðàâåíñòâî ¬(∀x P (x)) = (∃x ¬P (x)) 1 Êâàíòîðû âñåãäà ñ÷èòàþòñÿ ñâÿçàííûìè ñ ñîîòâåòñòâóþùèìè ïåðåìåííûìè è ñëîâà ¾ïîìåíÿåì ìåñòàìè êâàíòîðû¿ îçíà÷àþò, ÷òî èõ ìåíÿþò ìåñòàìè âìåñòå ñ ïåðåìåííûìè, êàê ýòî ñäåëàíî â äàííîì ïðèìåðå.
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »