ВУЗ:
Составители:
Рубрика:
R
R
T
T
T T
T T
T
T
T
T
T
0
= {∅, T }
T
1
= P(T )
A
X R
S
X∈X
X ⊃ A X
X A
G A
G ∈ G
Ëåêöèÿ 16 99 òî åñòü ÿâëÿåòñÿ äîïîëíåíèåì ê îòêðûòîìó ìíîæåñòâó, çíà÷èò, çàìêíóòî. ×òî è òðåáîâàëîñü äîêàçàòü. Òåîðåìà. Îáúåäèíåíèå êîíå÷íîãî êîëè÷åñòâà çàìêíóòûõ ìíîæåñòâ çàìêíóòî. Ä î ê à ç à ò å ë ü ñ ò â î ëåãêî ïîëó÷àåòñÿ ïåðåõîäîì ê äîïîëíåíèÿì àíàëîãè÷íî ïðåäûäóùåé òåîðåìå è åãî ðåêîìåíäóåòñÿ ïðîâåñòè ñàìîñòîÿ- òåëüíî. Çàäà÷à. Ìû óæå ïðèâîäèëè ïðèìåð, êîãäà ïåðåñå÷åíèå áåñêîíå÷íîãî ÷èñëà îòêðûòûõ ìíîæåñòâ íå ÿâëÿåòñÿ îòêðûòûì. Ïðèäóìàéòå ïðèìåð, êîãäà îáúåäèíåíèå áåñêîíå÷íîãî ÷èñëà çàìêíóòûõ ìíîæåñòâ íå ÿâëÿåòñÿ çàìêíóòûì. Òî, ÷òî ìû ïðîäåëàëè äî ñèõ ïîð ýòî îïðåäåëèëè (îïèñàëè, ïîñòðî- èëè), òàê íàçûâàåìóþ, ñòàíäàðòíóþ òîïîëîãèþ íà ìíîæåñòâå âñåõ äåé- ñòâèòåëüíûõ ÷èñåë R. Êàê áóäåò âèäíî èç ñëåäóþùåãî íèæå îïðåäåëåíèÿ, íà R ñóùåñòâóþò è äðóãèå òîïîëîãèè (ìåíåå õîðîøèå).  îáùåì ñëó÷àå òîïîëîãèÿ îïðåäåëÿåòñÿ ñëåäóþùèì îáðàçîì (ñóùå- ñòâóþò è äðóãèå ýêâèâàëåíòíûå ñïîñîáû) Îïðåäåëåíèå. Ìíîæåñòâî T íàçûâàåòñÿ òîïîëîãè÷åñêèì ïðîñòðàí- ñòâîì, åñëè â íåì âûäåëåí êëàññ ïîäìíîæåñòâ T ñî ñâîéñòâàìè: 1. Îáúåäèíåíèå ëþáîãî êîëè÷åñòâà ýëåìåíòîâ èç T ïðèíàäëåæèò T ; 2. Ïåðåñå÷åíèå êîíå÷íîãî ÷èñëà ýëåìåíòîâ èç T ïðèíàäëåæèò T . È â ýòîì ñëó÷àå ýëåìåíòû èç T íàçûâàþò îòêðûòûìè ìíîæåñòâàìè, à èõ äîïîëíåíèÿ çàìêíóòûìè ìíîæåñòâàìè. Ñàìî ìíîæåñòâî T íàçû- âàþò òîïîëîãèåé íà ìíîæåñòâå T . Çàäà÷à. Äîêàçàòü, ÷òî íà ëþáîì (íåïóñòîì) ìíîæåñòâå T áóäóò òîïî- ëîãèÿìè: 1. T0 = {∅, T } (Ýòà òîïîëîãèÿ íàçûâàåòñÿ òðèâèàëüíîé) 2. T1 = P(T ) (Ýòà òîïîëîãèÿ íàçûâàåòñÿ äèñêðåòíîé) Ëåêöèÿ 16. Ïðèíöèï êîìïàêòíîñòè Âñþäó â ýòîì ðàçäåëå ìû íàçûâàåì S ïîêðûòèåì ìíîæåñòâà A òàêîé êëàññ ïîäìíîæåñòâ X èç R, ÷òî X ⊃ A. (îáúåäèíåíèå âñåõ ïîäìíîæåñòâ X X∈X èç X ñîäåðæèò ìíîæåñòâî A) Îïðåäåëåíèå. Ïîêðûòèå G ìíîæåñòâà A íàçûâàåòñÿ îòêðûòûì, åñëè âñå åãî ýëåìåíòû G ∈ G îòêðûòûå ìíîæåñòâà.
Страницы
- « первая
- ‹ предыдущая
- …
- 97
- 98
- 99
- 100
- 101
- …
- следующая ›
- последняя »