ВУЗ:
Составители:
Рубрика:
17
примером периодического движения и служат моделью для рас-
смотрения и решения многих задач как классической, так и кван-
товой физики.
Законы движения пружинного маятника рассмотрены в пре-
дыдущем разделе. Остановимся здесь на колебаниях физического
и математического маятников.
Математический маятник – это идеализированная систе-
ма, состоящая из материальной точки массой m, подвешенной на
невесомой нерастяжимой нити.
Достаточно хорошим приближением к математическому ма-
ятнику служит небольшой тяжелый шарик, подвешенный на
длинной тонкой нити. Предполагается, что вся масса сосредото-
чена в одной точке – центре масс (рис. 4.2).
Рис 4.2
Если маятник отклонить от положения равновесия, то он
будет совершать колебания. Такие колебания можно представить
как вращение материальной точки вокруг неподвижной оси. В
этом случае можно воспользоваться основным законом динамики
вращательного движения
ε
r
r
I
M
=
(4.1)
Момент силы натяжения нити равен нулю, так как линия
действия силы натяжения проходит через ось вращения. Поэтому
17 примером периодического движения и служат моделью для рас- смотрения и решения многих задач как классической, так и кван- товой физики. Законы движения пружинного маятника рассмотрены в пре- дыдущем разделе. Остановимся здесь на колебаниях физического и математического маятников. Математический маятник – это идеализированная систе- ма, состоящая из материальной точки массой m, подвешенной на невесомой нерастяжимой нити. Достаточно хорошим приближением к математическому ма- ятнику служит небольшой тяжелый шарик, подвешенный на длинной тонкой нити. Предполагается, что вся масса сосредото- чена в одной точке – центре масс (рис. 4.2). Рис 4.2 Если маятник отклонить от положения равновесия, то он будет совершать колебания. Такие колебания можно представить как вращение материальной точки вокруг неподвижной оси. В этом случае можно воспользоваться основным законом динамики вращательного движения r r M = Iε (4.1) Момент силы натяжения нити равен нулю, так как линия действия силы натяжения проходит через ось вращения. Поэтому
Страницы
- « первая
- ‹ предыдущая
- …
- 15
- 16
- 17
- 18
- 19
- …
- следующая ›
- последняя »