Конспект лекций по статистической физике. Коренблит С.Э - 37 стр.

UptoLike

                                         |37|
6     ˆ¤¥ «ì­ë© £ §
   ‚ ¯à¥­¥¡à¥¦¥­¨¨ á⮫ª­®¢¥­¨ï¬¨ ¨ ¬¥¦¬®«¥ªã«ïà­ë¬ ¢§ ¨¬®¤¥©áâ-
¢¨¥¬ à §à¥¦¥­­ë© ¨ 㦥 ®â५ ªá¨à®¢ ¢è¨© ª à ¢­®¢¥á¨î ॠ«ì­ë© £ §
¢ë£«ï¤¨â ¯®ç⨠ª ª ¨¤¥ «ì­ë© £ §, ¤«ï ª®â®à®£®:
                          X p2i
                          3N                        1    Z Ys dqi dpi
 d=3; s =3N; H (X )=               ; (E; V; N )= N !                  =)
                         i=1 2m                       H(X)E i=1 h
               Z                                 3
 =) V 3N P                            V N (2mE ) 2 N B ; £¤¥:
         N
                    dp
      N !h p2i 2mE 1   : : : dp 3N =
                                         N !h3N       3N               (3.44)
        p             Z                            1 n + 1 ! n=2
 pi = xi 2mE; Bn = dx1 : : : dxn = Bn 1 B 2 ; 2 = (n=2)! ; (3.45)
                   Pn 2    x i 1
                     i=1
                                               n  !n
 { ®¡ê¥¬ ¥¤¨­¨ç­®£® n-¬¥à­®£® è à , n! '
                                               e ; ln n! ' n ln n n;
                V N (2mE ) 23 N   V !N 2mE ! 32 N 0 (2) 23 e 52 1N
                N !h3N (3N=2)! ' N
  (E; V; N ) =                                     @              A ;     (3.46)
                                         3N             h3
                              2              !      0            3 5 13
                                 V   3   2 E          (2 m
 S (E; V; N ) = k ln = Nk 4ln N + 2 ln 3N + ln @ h3 e A5 : (3.47)
                                                              )  2 2

          0              1
  1 = 1 @ @S (E; V; N ) A = 3N ; â.¥.: E = 3 NkT = 3N kT  s kT ; (3.48)
 kT k            @E            V2E           2                  2       2
                                                 2                    3
              !
    P = @S = Nk ; PV = NkT; S = Nk ln 4 V e5=2 2mkT !3=25 : (3.49)
    T       @V E V                                     N h2
      ([4] x10, [5] x61, [6] xx6,7,8, [7], [15], [35])
     ‡ ¤ ç¨
9.1. ‘ ãç¥â®¬ (3.32), (3.33), ¢ëà §¨âì ç¨á«® á®áâ®ï­¨© N - ç áâ¨æ ¨¤¥ «ì-
­®£® £ § (E; V; N ) (3.44) ç¥à¥§ ç¨á« á®áâ®ï­¨© ª ¦¤®© ¨§ ­¨å ("j ; V ):
                                 81                9 0          1
                         1   N
                             Y   >
                                 < Z               >
                                                   =      XN
                        N ! j=1 >:0 d"j D("j ; V )>;  E j=1 "j ;
         (E; V; N ) =                                 @         A      (3.50)
                      d      Z d3qj d3 pj d ("j ; V )            p"j :
        D("j ; V ) = d"              h3            d"j  = A 3=2       (3.51)
                        j p22m"j
                           j
9.2. ‚ëà §¨¢ D(E; V; N ) = P g(Em )(E Em ), ¯à®¢¥à¨âì (3.39) ¤«ï (3.3).
                                    Em