ВУЗ:
Составители:
Рубрика:
29
Если рассматриваем статистику
2
χ
(хи-квадрат), то тоже имеем два
«хвоста», которые для нас незначимы (рисунки 2.1, 2.2).
Если изменение физической величины происходит только в одну
сторону, то необходимо рассматривать односторонний критерий (рисунок
2.3).
Уровень значимости
α это число, дополняющее доверительную ве-
роятность
β
до единицы. Доверительная вероятность, это синоним надеж-
ности, или по-другому степень уверенности.
Значимость с точки зрения проверки гипотезы означает принять ги-
потезу с определенной уверенностью или отвернуть ее, если оценка попада-
ет в интервал не принятия гипотезы.
Для проверки гипотез вводится случайная величина, для которой
обязательно известен закон распределения. Эта случайная величина прак-
тически реализуется на интервале, который мы будем разделять на зону
принятия и не принятия гипотезы. Чтобы указать эту зону не принятия ги-
потезы, задаем уровень значимости
α
. При этом если критерий односто-
ронний, то )(
кр
xxp >=
α
.
x
Рисунок 2.1 – Нормальный закон
Рисунок 2.2 – Двустороннее
распределение
2
χ
x
f
(x)
α
/2
α
/2
x
β
2
χ
α
/2
α
/2
β
Рисунок 2.3 – Одностороннее распределение
2
χ
2
χ
α
β
x
Если рассматриваем статистику χ 2 (хи-квадрат), то тоже имеем два «хвоста», которые для нас незначимы (рисунки 2.1, 2.2). f(x) χ2 β β x α/2 α/2 x α/2 α/2 x Рисунок 2.1 – Нормальный закон Рисунок 2.2 – Двустороннее распределение χ 2 Если изменение физической величины происходит только в одну сторону, то необходимо рассматривать односторонний критерий (рисунок 2.3). χ2 β α x Рисунок 2.3 – Одностороннее распределение χ 2 Уровень значимости α это число, дополняющее доверительную ве- роятность β до единицы. Доверительная вероятность, это синоним надеж- ности, или по-другому степень уверенности. Значимость с точки зрения проверки гипотезы означает принять ги- потезу с определенной уверенностью или отвернуть ее, если оценка попада- ет в интервал не принятия гипотезы. Для проверки гипотез вводится случайная величина, для которой обязательно известен закон распределения. Эта случайная величина прак- тически реализуется на интервале, который мы будем разделять на зону принятия и не принятия гипотезы. Чтобы указать эту зону не принятия ги- потезы, задаем уровень значимости α . При этом если критерий односто- ронний, то α = p ( x > xкр ) . 29
Страницы
- « первая
- ‹ предыдущая
- …
- 27
- 28
- 29
- 30
- 31
- …
- следующая ›
- последняя »