Статистические методы и модели. Костин В.Н - 30 стр.

UptoLike

Составители: 

Рубрика: 

30
Для двустороннего критерия имеем:
=<
=>
.
2
)(
2
)(
α
α
кр
кр
xxp
xxp
Если результат оценки параметра попадает в область 2
/
α
, то гипотеза
отвергается, если нет, то гипотеза принимается с надежностью
α
β
=1.
Данный подход широко используется при оценке качества продук-
ции. Так если по выборке из партии оценка результата попадает в интервал
α
, то партия бракуется. Уровень значимости назначают от 1% до 10%, то
есть от величины
α
зависит величина заслона некачественной продукции.
Не случайно для продукции, которая выпускается на экспорт уровень зна-
чимости
α
очень велик. Если уровень значимости
α
низкий, то вероят-
ность пропустить некачественную продукцию увеличивается.
Однако, при оценке продукции можно забраковать хорошую партию
изделий из-за некачественной выборки. Это и есть ошибка второго рода.
Ошибка второго рода рассматривается, когда вводится конкури-
рующая гипотеза.
.
1
1
0
~
:
~
:
xx
xx
mmH
mm
H
=
=
Графически гипотезы представим на рисунке 2.4
На рисунке 2.4 мы видим, что
α
это риск поставщика, вероятность
забраковать качественную продукцию (отвергнуть гипотезу
Н
0
).
0
H
.таб
x
m
α
x
β
1
x
m
1
H
1-
β
Рисунок 2.4 – Конкурирующие гипотезы
табличное
       Для двустороннего критерия имеем:

                                                α
                              p ( x > x    ) =
                                          кр     2
                             
                              p( x < − x ) = α .
                                          кр     2

       Если результат оценки параметра попадает в область α / 2 , то гипотеза
отвергается, если нет, то гипотеза принимается с надежностью β = 1 − α .
       Данный подход широко используется при оценке качества продук-
ции. Так если по выборке из партии оценка результата попадает в интервал
α , то партия бракуется. Уровень значимости назначают от 1% до 10%, то
есть от величины α зависит величина заслона некачественной продукции.
Не случайно для продукции, которая выпускается на экспорт уровень зна-
чимости α – очень велик. Если уровень значимости α низкий, то вероят-
ность пропустить некачественную продукцию увеличивается.
       Однако, при оценке продукции можно забраковать хорошую партию
изделий из-за некачественной выборки. Это и есть ошибка второго рода.
       Ошибка второго рода рассматривается, когда вводится конкури-
рующая гипотеза.
                                    ~ = m – табличное
                               H0 : m x   x
                                    ~
                               H1 : mx = mx1.

       Графически гипотезы представим на рисунке 2.4

                          H0
                               H1
                                                β

                                                       1 -β

                                  m                           x
                            mxтаб. x1       α


        Рисунок 2.4 – Конкурирующие гипотезы

       На рисунке 2.4 мы видим, что α – это риск поставщика, вероятность
забраковать качественную продукцию (отвергнуть гипотезу Н0).



                                                                           30