Функциональные последовательности и ряды - 57 стр.

UptoLike

Составители: 

f(x) = ln (1 + x)
ln (1 + x) = x
x
2
2
+
x
3
3
x
4
4
+ . . . + (1)
n1
x
n
n
+ R
n+1
(x).
R
n+1
x [0, 1]
R
n+1
(x) = (1)
n
x
n+1
(n + 1)(1 + θx)
n+1
, 0 < θ < 1,
x (1, 0)
R
n+1
(x) = (1)
n
x
n+1
(1 θ)
n
(1 + θx)
n+1
, 0 < θ < 1.
x [0, 1]
|R
n+1
(x)|
1
n + 1
.
R
n+1
(x) 0 n x
[0, 1]
R
n+1
x
R
n+1
(x) = (1)
n
µ
1 θ
1 + θx
n
x
n+1
1 + θx
.
x
1 θ
1 + θx
< 1,
|R
n+1
(x)| <
|x|
n+1
1 |x|
.
|x| < 1
lim
n→∞
R
n+1
(x) = 0.
ln (1 + x)