ВУЗ:
Составители:
Рубрика:
R
x
5
(2 − 5x
3
)
2
3
dx.
Z
x
5
(2−5x
3
)
2
3
dx =
Z
x
3
(2−5x
3
)
2
3
x
2
dx =
1
3
Z
x
3
(2−5x
3
)
2
3
d(x
3
) =
= −
1
15
Z
x
3
(2 − 5x
3
)
2
3
d(2 − 5x
3
) =
·
2 − 5x
3
= u, x
3
=
2 − u
5
¸
=
= −
1
15
Z
2 − u
5
u
2
3
du = −
1
75
Z
(2 − u)u
2
3
du = −
2
75
Z
u
2
3
du+
+
1
75
Z
u
5
3
du = −
2
75
·
3
5
u
5
3
+
1
75
·
3
8
u
8
3
+ C = −
2
125
(2 − 5x
3
)
5
3
+
+
1
200
(2 − 5x
3
)
8
3
+ C = −
(2 − 5x
3
)
5
3
1000
¡
16 − 5(2 − 5x
3
)
¢
+ C =
= −
6 + 25x
3
1000
(2 − 5x
3
)
5
3
+ C.
R
sin
2
x
cos
6
x
dx.
tg x
Z
sin
2
x
cos
6
x
dx =
Z
sin
2
x
cos
2
x
·
1
cos
2
x
·
dx
cos
2
x
=
=
Z
tg
2
x
¡
1 + tg
2
x
¢
d(tg x) =
Z
tg
2
x d(tg x) +
Z
tg
4
x d(tg x) =
=
tg
3
x
3
+
tg
5
x
5
+ C.
R
arctg
√
x
√
x
dx
1+x
.
dx
√
x
= 2 d(
√
x) u =
√
x
Z
arctg
√
x
√
x
dx
1 + x
= 2
Z
arctg
√
x
1 + x
d(
√
x) = 2
Z
arctg u
1 + u
2
du =
= 2
Z
arctg u d(arctg u) = arctg
2
u + C = arctg
2
√
x + C.
30
R
1770.
2
x5 (2 − 5x3 ) 3 dx.
Ïðåîáðàçóÿ ïîäûíòåãðàëüíîå âûðàæåíèå, ââåäåì íîâûé àðãó-
ìåíò:
Z Z Z
5 3 23 3 3 23 2 1 2
x (2−5x ) dx = x (2−5x ) x dx = x3 (2−5x3 ) 3 d(x3 ) =
3
Z · ¸
1 3 3 23 3 3 3 2−u
=− x (2 − 5x ) d(2 − 5x ) = 2 − 5x = u, x = =
15 5
Z Z Z
1 2−u 2 1 2 2 2
=− u 3 du = − (2 − u)u 3 du = − u 3 du+
15 5 75 75
Z
1 5 2 3 5 1 3 8 2 5
+ u 3 du = − · u 3 + · u3 + C = − (2 − 5x3 ) 3 +
75 75 5 75 8 125
5
1 8 (2 − 5x3 ) 3 ¡ ¢
+ (2 − 5x3 ) 3 + C = − 16 − 5(2 − 5x3 ) + C =
200 1000
3
6 + 25x 5
=− (2 − 5x3 ) 3 + C.
1000
R sin2 x
1773. cos6 x dx.
Âûðàçèì ïîäûíòåãðàëüíîå âûðàæåíèå ÷åðåç tg x:
Z Z
sin2 x sin2 x 1 dx
dx = · · =
cos6 x cos2 x cos2 x cos2 x
Z Z Z
¡ ¢
= tg x 1 + tg x d(tg x) = tg x d(tg x) + tg4 x d(tg x) =
2 2 2
tg3 x tg5 x
= + + C.
3 5
R √
1777.
arctg x dx
√
x 1+x
.
dx √ √
Âñïîìíèâ, ÷òî √x = 2 d( x), ââåäåì íîâûé àðãóìåíò u = x:
Z √ Z √ Z
arctg x dx arctg x √ arctg u
√ =2 d( x) = 2 du =
x 1+x 1+x 1 + u2
Z
√
= 2 arctg u d(arctg u) = arctg2 u + C = arctg2 x + C.
Страницы
- « первая
- ‹ предыдущая
- …
- 28
- 29
- 30
- 31
- 32
- …
- следующая ›
- последняя »
