Интегрирование функций одного переменного: примеры и задачи. Ч.1. Неопределенный интеграл: основные понятия, свойства, методы интегрирования. Кропотова Т.В - 30 стр.

UptoLike

R
x
5
(2 5x
3
)
2
3
dx.
Z
x
5
(25x
3
)
2
3
dx =
Z
x
3
(25x
3
)
2
3
x
2
dx =
1
3
Z
x
3
(25x
3
)
2
3
d(x
3
) =
=
1
15
Z
x
3
(2 5x
3
)
2
3
d(2 5x
3
) =
·
2 5x
3
= u, x
3
=
2 u
5
¸
=
=
1
15
Z
2 u
5
u
2
3
du =
1
75
Z
(2 u)u
2
3
du =
2
75
Z
u
2
3
du+
+
1
75
Z
u
5
3
du =
2
75
·
3
5
u
5
3
+
1
75
·
3
8
u
8
3
+ C =
2
125
(2 5x
3
)
5
3
+
+
1
200
(2 5x
3
)
8
3
+ C =
(2 5x
3
)
5
3
1000
¡
16 5(2 5x
3
)
¢
+ C =
=
6 + 25x
3
1000
(2 5x
3
)
5
3
+ C.
R
sin
2
x
cos
6
x
dx.
tg x
Z
sin
2
x
cos
6
x
dx =
Z
sin
2
x
cos
2
x
·
1
cos
2
x
·
dx
cos
2
x
=
=
Z
tg
2
x
¡
1 + tg
2
x
¢
d(tg x) =
Z
tg
2
x d(tg x) +
Z
tg
4
x d(tg x) =
=
tg
3
x
3
+
tg
5
x
5
+ C.
R
arctg
x
x
dx
1+x
.
dx
x
= 2 d(
x) u =
x
Z
arctg
x
x
dx
1 + x
= 2
Z
arctg
x
1 + x
d(
x) = 2
Z
arctg u
1 + u
2
du =
= 2
Z
arctg u d(arctg u) = arctg
2
u + C = arctg
2
x + C.
30
             R
     1770.
                           2
              x5 (2 − 5x3 ) 3 dx.
Ïðåîáðàçóÿ ïîäûíòåãðàëüíîå âûðàæåíèå, ââåäåì íîâûé àðãó-
ìåíò:
Z                         Z                               Z
    5          3 23             3        3 23 2         1                2
   x (2−5x ) dx = x (2−5x ) x dx =                          x3 (2−5x3 ) 3 d(x3 ) =
                                                        3
          Z                                     ·                              ¸
      1         3         3 23           3                3        3    2−u
=−           x (2 − 5x ) d(2 − 5x ) = 2 − 5x = u, x =                            =
      15                                                                   5
             Z                           Z                           Z
         1        2−u 2               1                 2         2       2
   =−                   u 3 du = −           (2 − u)u 3 du = −          u 3 du+
         15         5                 75                         75
       Z
    1        5           2 3 5           1 3 8                  2              5
 +         u 3 du = − · u 3 +                · u3 + C = −           (2 − 5x3 ) 3 +
   75                   75 5            75 8                   125
                                                  5
       1              8              (2 − 5x3 ) 3 ¡                    ¢
  +       (2 − 5x3 ) 3 + C = −                      16 − 5(2 − 5x3 ) + C =
     200                                 1000
                                        3
                               6 + 25x                5
                        =−                (2 − 5x3 ) 3 + C.
                                  1000
           R sin2 x
  1773. cos6 x dx.
Âûðàçèì ïîäûíòåãðàëüíîå âûðàæåíèå ÷åðåç tg x:
                 Z                 Z
                    sin2 x             sin2 x       1       dx
                            dx   =              ·         ·       =
                    cos6 x             cos2 x cos2 x cos2 x
    Z                                    Z                   Z
               ¡          ¢
  = tg x 1 + tg x d(tg x) = tg x d(tg x) + tg4 x d(tg x) =
           2           2                       2


                                tg3 x tg5 x
                            =        +      + C.
                                  3     5
             R √
     1777.
         arctg x dx
            √
              x    1+x
                       .
                 dx      √                                   √
Âñïîìíèâ, ÷òî √x = 2 d( x),    ââåäåì íîâûé àðãóìåíò u = x:
     Z       √            Z       √             Z
        arctg x dx           arctg x √             arctg u
           √          =2              d( x) = 2            du =
             x 1+x             1+x                  1 + u2
          Z
                                                      √
       = 2 arctg u d(arctg u) = arctg2 u + C = arctg2 x + C.