ВУЗ:
Составители:
Рубрика:
R
x
2
√
a
2
+x
2
dx.
x = a sh t
x = a sh t,
√
a
2
+ x
2
=
q
a
2
(1 + sh
2
t) = a
p
ch
2
t = a ch t,
dx = a ch tdt.
Z
x
2
√
a
2
+ x
2
dx =
Z
a
2
sh
2
t
a ch t
· ach t dt = a
2
Z
sh
2
tdt =
=
a
2
2
Z
(ch 2t − 1)dt =
a
2
2
µ
1
2
sh 2t − t
¶
+ C.
sh 2t = 2 sh t ch t = 2 ·
x
a
·
r
1 +
³
x
a
´
2
=
2x
√
a
2
+ x
2
a
2
.
t x
t sh t = z
sh t = z ⇒
e
t
− e
−t
2
= z,
¡
e
t
¢
2
−2z e
t
−1 = 0, e
t
= z ±
√
z
2
+ 1.
e
t
> 0
e
t
= z +
√
z
2
+ 1 t = ln(z +
√
z
2
+ 1).
sh t = z ⇒ t = ln(z +
√
z
2
+ 1) = Arsh z
sh t =
x
a
t = ln(x +
√
x
2
+ a
2
) − ln a
Z
x
2
√
a
2
+ x
2
dx =
x
2
√
a
2
+ x
2
−
a
2
2
ln(x +
√
x
2
+ a
2
) +
˜
C.
37
R
1787.
2
√ x dx.
a +x2
2
Ãèïåðáîëè÷åñêàÿ ïîäñòàíîâêà x = a sh t ïîçâîëèò íàì èçáàâèòü-
ñÿ îò ðàäèêàëà. Èìååì:
√ q p
x = a sh t, a + x = a2 (1 + sh2 t) = a ch2 t = a ch t,
2 2
dx = a ch tdt.
Äëÿ èíòåãðàëà ïîëó÷èì:
Z Z 2 2 Z
x2 a sh t
√ dx = · ach t dt = a 2
sh2 tdt =
2
a +x 2 a ch t
Z µ ¶
a2 a2 1
= (ch 2t − 1)dt = sh 2t − t + C.
2 2 2
Âåðíåìñÿ ê èñõîäíîé ïåðåìåííîé èíòåãðèðîâàíèÿ. Î÷åâèäíî,
÷òî
r ³ x ´2 2x√a2 + x2
x
sh 2t = 2 sh t ch t = 2 · · 1 + = .
a a a2
Îñòàëîñü âûðàçèòü t ÷åðåç x. Äëÿ ýòîãî ïðåäâàðèòåëüíî ðåøèì
îòíîñèòåëüíî t óðàâíåíèå sh t = z :
et − e−t ¡ t ¢2 √
sh t = z ⇒ = z, e − 2z et − 1 = 0, et = z ± z 2 + 1.
2
t
Ïîñêîëüêó e > 0, òî îäèí êîðåíü ÿâëÿåòñÿ ïîñòîðîííèì. Ñëå-
äîâàòåëüíî
√ √
et = z + z 2 + 1 è t = ln(z + z 2 + 1).
Îòìåòèì, ÷òî òàêèì îáðàçîì ìû ïîëó÷èëè âûðàæåíèå äëÿ îá-
ðàòíîãî ãèïåðáîëè÷åñêîãî ñèíóñà:
√
sh t = z ⇒ t = ln(z + z 2 + 1) = Arsh z
√
 íàøåì ñëó÷àå sh t = xa , ïîýòîìó t = ln(x + x2 + a2 ) − ln a.
Òàêèì îáðàçîì,
Z
x2 x√ 2 a2 √
√ dx = a + x2 − ln(x + x2 + a2 ) + C̃.
a 2 + x2 2 2
Страницы
- « первая
- ‹ предыдущая
- …
- 35
- 36
- 37
- 38
- 39
- …
- следующая ›
- последняя »
