ВУЗ:
Составители:
Рубрика:
R
sin x ln(tg x) dx.
Z
sin x ln(tg x) dx = −
Z
ln(tg x) d(cos x) = −cos x ln(tg x)+
+
Z
cos xd ln(tg x) =
·
d ln(tg x) =
1
tg x
·
dx
cos
2
x
=
dx
sin x cos x
¸
=
= −cos x ln(tg x) +
Z
dx
sin x
=
= −cos x ln(tg x) + ln
¯
¯
¯
tg
x
2
¯
¯
¯
+ C.
R
x
2
(1+x
2
)
2
dx.
Z
x
2
(1 + x
2
)
2
dx =
Z
x
xdx
(1 + x
2
)
2
=
1
2
Z
xd
µ
−1
1 + x
2
¶
=
=
¯
¯
¯
¯
u = x, du = dx,
dv = d
¡
−1
1+x
2
¢
, v = −
1
1+x
2
¯
¯
¯
¯
=
1
2
µ
−
x
1 + x
2
+
Z
dx
1 + x
2
¶
=
= −
x
2(1 + x
2
)
+
1
2
arctg x + C.
R
dx
(a
2
+x
2
)
2
.
Z
dx
(a
2
+ x
2
)
2
=
1
a
2
Z
a
2
dx
(a
2
+ x
2
)
2
=
1
a
2
Z
(a
2
+ x
2
) − x
2
(a
2
+ x
2
)
2
dx =
=
1
a
2
µ
Z
dx
a
2
+ x
2
−
Z
x
2
(a
2
+ x
2
)
2
dx
¶
=
1
a
2
·
1
a
arctg
x
a
−
−
1
a
2
Z
x
xdx
(a
2
+ x
2
)
2
=
=
1
a
3
arctg
x
a
+
x
2a
2
·
1
a
2
+ x
2
−
1
2a
3
arctg
x
a
+ C =
1
2a
3
arctg
x
a
+
47 R 1810. sin x ln(tg x) dx. Z Z sin x ln(tg x) dx = − ln(tg x) d(cos x) = − cos x ln(tg x)+ Z · ¸ 1 dx dx + cos xd ln(tg x) = d ln(tg x) = · = = tg x cos2 x sin x cos x Z dx = − cos x ln(tg x) + = (âîñïîëüçóåìñÿ ðåçóëüòàòîì sin x ¯ x¯ ¯ ¯ çàäà÷è 1703) = − cos x ln(tg x) + ln ¯tg ¯ + C. 2 R x2 1816. (1+x2 )2 dx. Z Z Z µ ¶ x2 xdx 1 −1 dx = x = xd = (1 + x2 )2 (1 + x2 )2 2 1 + x2 ¯ ¯ µ Z ¶ ¯ u = x, du = dx, ¯ 1 x dx =¯ ¯ ¡ −1 ¢ 1 ¯ = ¯ − + = dv = d 1+x 2 , v = − 1+x 2 2 1 + x2 1 + x2 x 1 =− 2 + arctg x + C. 2(1 + x ) 2 R 1817. (a2 +x2 )2 . dx Ðàçîáüåì èíòåãðàë íà äâà ñëàãàåìûõ: Z Z Z dx 1 a2 dx 1 (a2 + x2 ) − x2 = = dx = (a2 + x2 )2 a2 (a2 + x2 )2 a2 (a2 + x2 )2 µZ Z ¶ 1 dx x2 1 1 x = 2 2 2 − 2 2 2 dx = 2 · arctg − a a +x (a + x ) a a a Z 1 xdx − 2 x 2 = a (a + x2 )2 (ïîñëåäíèé èíòåãðàë âû÷èñëÿåòñÿ àíàëîãè÷íî èíòåãðàëó çàäà÷è 1816, ðåêîìåíäóåì ÷èòàòåëþ ïðîäåëàòü âñå âûêëàäêè ñàìîñòî- ÿòåëüíî) 1 x x 1 1 x 1 x = 3 arctg + 2 · 2 2 − 3 arctg + C = 3 arctg + a a 2a a + x 2a a 2a a
Страницы
- « первая
- ‹ предыдущая
- …
- 45
- 46
- 47
- 48
- 49
- …
- следующая ›
- последняя »