Интегрирование функций одного переменного: примеры и задачи. Ч.1. Неопределенный интеграл: основные понятия, свойства, методы интегрирования. Кропотова Т.В - 47 стр.

UptoLike

R
sin x ln(tg x) dx.
Z
sin x ln(tg x) dx =
Z
ln(tg x) d(cos x) = cos x ln(tg x)+
+
Z
cos xd ln(tg x) =
·
d ln(tg x) =
1
tg x
·
dx
cos
2
x
=
dx
sin x cos x
¸
=
= cos x ln(tg x) +
Z
dx
sin x
=
= cos x ln(tg x) + ln
¯
¯
¯
tg
x
2
¯
¯
¯
+ C.
R
x
2
(1+x
2
)
2
dx.
Z
x
2
(1 + x
2
)
2
dx =
Z
x
xdx
(1 + x
2
)
2
=
1
2
Z
xd
µ
1
1 + x
2
=
=
¯
¯
¯
¯
u = x, du = dx,
dv = d
¡
1
1+x
2
¢
, v =
1
1+x
2
¯
¯
¯
¯
=
1
2
µ
x
1 + x
2
+
Z
dx
1 + x
2
=
=
x
2(1 + x
2
)
+
1
2
arctg x + C.
R
dx
(a
2
+x
2
)
2
.
Z
dx
(a
2
+ x
2
)
2
=
1
a
2
Z
a
2
dx
(a
2
+ x
2
)
2
=
1
a
2
Z
(a
2
+ x
2
) x
2
(a
2
+ x
2
)
2
dx =
=
1
a
2
µ
Z
dx
a
2
+ x
2
Z
x
2
(a
2
+ x
2
)
2
dx
=
1
a
2
·
1
a
arctg
x
a
1
a
2
Z
x
xdx
(a
2
+ x
2
)
2
=
=
1
a
3
arctg
x
a
+
x
2a
2
·
1
a
2
+ x
2
1
2a
3
arctg
x
a
+ C =
1
2a
3
arctg
x
a
+
                                                                                    47
           R
   1810.      sin x ln(tg x) dx.
  Z                                 Z
       sin x ln(tg x) dx = − ln(tg x) d(cos x) = − cos x ln(tg x)+
   Z                            ·                                                   ¸
                                                      1        dx           dx
 + cos xd ln(tg x) = d ln(tg x) =                          ·        =                 =
                                                    tg x cos2 x         sin x cos x
                                Z
                                      dx
   = − cos x ln(tg x) +                      = (âîñïîëüçóåìñÿ ðåçóëüòàòîì
                                    sin x
                                                                 ¯ x¯
                                                                 ¯    ¯
             çàäà÷è 1703) = − cos x ln(tg x) + ln ¯tg ¯ + C.
                                                                    2
            R x2
  1816. (1+x2 )2 dx.
        Z                        Z                           Z     µ         ¶
                x2                         xdx            1            −1
                         dx = x                       =         xd              =
            (1 + x2 )2                 (1 + x2 )2         2          1 + x2
     ¯                                        ¯       µ               Z           ¶
     ¯      u  =  x,           du   =  dx,    ¯ 1              x             dx
  =¯ ¯          ¡  −1
                        ¢                1 ¯ =
                                              ¯          −         +                 =
      dv = d 1+x      2   , v = − 1+x       2       2       1 + x2         1 + x2
                                     x            1
                         =−               2
                                               + arctg x + C.
                               2(1 + x ) 2
            R
  1817. (a2 +x2 )2 .
                  dx

Ðàçîáüåì èíòåãðàë íà äâà ñëàãàåìûõ:
   Z                           Z                           Z
             dx            1           a2 dx            1      (a2 + x2 ) − x2
                      =                            =                            dx =
        (a2 + x2 )2        a2      (a2 + x2 )2         a2        (a2 + x2 )2
              µZ                   Z                      ¶
          1             dx                    x2                 1 1           x
      = 2            2       2
                                −          2      2  2
                                                       dx = 2 · arctg −
          a         a +x               (a + x )                  a a           a
                                      Z
                                  1              xdx
                               − 2 x 2                       =
                                  a          (a + x2 )2
(ïîñëåäíèé èíòåãðàë âû÷èñëÿåòñÿ àíàëîãè÷íî èíòåãðàëó çàäà÷è
1816, ðåêîìåíäóåì ÷èòàòåëþ ïðîäåëàòü âñå âûêëàäêè ñàìîñòî-
ÿòåëüíî)
      1         x        x          1            1           x            1        x
  = 3 arctg + 2 · 2                     2
                                           − 3 arctg + C = 3 arctg +
     a           a 2a a + x                     2a           a          2a         a