Интегрирование функций одного переменного: примеры и задачи. Ч.1. Неопределенный интеграл: основные понятия, свойства, методы интегрирования. Кропотова Т.В - 60 стр.

UptoLike

=
1
sgn x
ln
¯
¯
¯
¯
¯
1
x
+
1
2
+
r
1 +
1
x
+
³
1
x
´
2
¯
¯
¯
¯
¯
+ C =
=
1
sgn x
ln
¯
¯
¯
¯
¯
x + 2
2x
+
x
2
+ x + 1
|x|
¯
¯
¯
¯
¯
+ C = I.
x > 0
I = ln
¯
¯
¯
¯
¯
x + 2 + 2
x
2
+ x + 1
2x
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
¯
x + 2 + 2
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+
˜
C, (
˜
C = C + ln 2).
x < 0
I = ln
¯
¯
¯
¯
¯
x + 2 2
x
2
+ x + 1
2x
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
¯
(x + 2 2
x
2
+ x + 1)(x + 2 + 2
x
2
+ x + 1)
2x(x + 2 + 2
x
2
+ x + 1)
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
(x + 2)
2
4(x
2
+ x + 1)
2x(x + 2 + 2
x
2
+ x + 1)
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
3x
2
2x(x + 2 + 2
x
2
+ x + 1)
¯
¯
¯
¯
+C = ln
¯
¯
¯
¯
x
x + 2 + 2
x
2
+ x + 1
¯
¯
¯
¯
+
+
˜
C = ln
¯
¯
¯
¯
¯
x + 2 + 2
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+
˜
C,
µ
˜
C = C + ln
3
2
.
x
Z
dx
x
x
2
+ x + 1
= ln
¯
¯
¯
¯
¯
x + 2 + 2
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+ C.
60
                       ¯                         ¯
                1      ¯1 1 r          1 ³ 1 ´2 ¯¯
                       ¯
           =−       ln ¯ + + 1 + +               ¯+C =
              sgn x ¯ x 2              x     x ¯
                         ¯                    ¯
                 1       ¯ x + 2 √ x2 + x + 1 ¯
                         ¯                    ¯
           =−        ln ¯       +             ¯ + C = I.
               sgn x ¯ 2x             |x|     ¯
Ïðè x > 0:
                       ¯                        ¯
                       ¯ x + 2 + 2 √ x2 + x + 1 ¯
                       ¯                        ¯
              I = − ln ¯                        ¯+C =
                       ¯           2x           ¯
              ¯                        ¯
              ¯ x + 2 + 2 √ x2 + x + 1 ¯
              ¯                        ¯
       = − ln ¯                        ¯ + C̃,   (C̃ = C + ln 2).
              ¯           x            ¯
Ïðè x < 0:
                       ¯                      ¯
                       ¯ x + 2 − 2√x2 + x + 1 ¯
                       ¯                      ¯
                I = ln ¯                      ¯+C =
                       ¯          2x          ¯
         ¯                                                    ¯
         ¯ (x + 2 − 2√x2 + x + 1)(x + 2 + 2√x2 + x + 1) ¯
         ¯                                                    ¯
   = ln ¯                          √                          ¯+C =
         ¯                            2
                       2x(x + 2 + 2 x + x + 1)                ¯
                     ¯                             ¯
                     ¯ (x + 2)2 − 4(x2 + x + 1) ¯
               = ln ¯¯             √               ¯+C =
                       2x(x + 2 + 2 x + x + 1) ¯
                                      2

     ¯                             ¯          ¯                         ¯
     ¯             −3x2            ¯          ¯            x            ¯
     ¯
= ln ¯               √             ¯ +C = ln ¯¯           √             ¯+
       2x(x + 2 + 2 x2 + x + 1)    ¯            x + 2 + 2 x2 + x + 1 ¯
                ¯                        ¯
                ¯ x + 2 + 2 √ x2 + x + 1 ¯          µ
                                                                  3
                                                                    ¶
                ¯                        ¯
   +C̃ = − ln ¯                          ¯ + C̃,      C̃ = C + ln     .
                ¯           x            ¯                        2
Òàêèì îáðàçîì, âíå çàâèñèìîñòè îò çíàêà x, ïîëó÷àåì:
                             ¯                        ¯
     Z
              dx             ¯ x + 2 + 2 √ x2 + x + 1 ¯
                             ¯                        ¯
         √            = − ln ¯                        ¯ + C.
            2
        x x +x+1             ¯           x            ¯