ВУЗ:
Составители:
Рубрика:
= −
1
sgn x
ln
¯
¯
¯
¯
¯
1
x
+
1
2
+
r
1 +
1
x
+
³
1
x
´
2
¯
¯
¯
¯
¯
+ C =
= −
1
sgn x
ln
¯
¯
¯
¯
¯
x + 2
2x
+
√
x
2
+ x + 1
|x|
¯
¯
¯
¯
¯
+ C = I.
x > 0
I = −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
2x
¯
¯
¯
¯
¯
+ C =
= −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+
˜
C, (
˜
C = C + ln 2).
x < 0
I = ln
¯
¯
¯
¯
¯
x + 2 − 2
√
x
2
+ x + 1
2x
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
¯
(x + 2 − 2
√
x
2
+ x + 1)(x + 2 + 2
√
x
2
+ x + 1)
2x(x + 2 + 2
√
x
2
+ x + 1)
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
(x + 2)
2
− 4(x
2
+ x + 1)
2x(x + 2 + 2
√
x
2
+ x + 1)
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
−3x
2
2x(x + 2 + 2
√
x
2
+ x + 1)
¯
¯
¯
¯
+C = ln
¯
¯
¯
¯
x
x + 2 + 2
√
x
2
+ x + 1
¯
¯
¯
¯
+
+
˜
C = −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+
˜
C,
µ
˜
C = C + ln
3
2
¶
.
x
Z
dx
x
√
x
2
+ x + 1
= −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+ C.
60
¯ ¯
1 ¯1 1 r 1 ³ 1 ´2 ¯¯
¯
=− ln ¯ + + 1 + + ¯+C =
sgn x ¯ x 2 x x ¯
¯ ¯
1 ¯ x + 2 √ x2 + x + 1 ¯
¯ ¯
=− ln ¯ + ¯ + C = I.
sgn x ¯ 2x |x| ¯
Ïðè x > 0:
¯ ¯
¯ x + 2 + 2 √ x2 + x + 1 ¯
¯ ¯
I = − ln ¯ ¯+C =
¯ 2x ¯
¯ ¯
¯ x + 2 + 2 √ x2 + x + 1 ¯
¯ ¯
= − ln ¯ ¯ + C̃, (C̃ = C + ln 2).
¯ x ¯
Ïðè x < 0:
¯ ¯
¯ x + 2 − 2√x2 + x + 1 ¯
¯ ¯
I = ln ¯ ¯+C =
¯ 2x ¯
¯ ¯
¯ (x + 2 − 2√x2 + x + 1)(x + 2 + 2√x2 + x + 1) ¯
¯ ¯
= ln ¯ √ ¯+C =
¯ 2
2x(x + 2 + 2 x + x + 1) ¯
¯ ¯
¯ (x + 2)2 − 4(x2 + x + 1) ¯
= ln ¯¯ √ ¯+C =
2x(x + 2 + 2 x + x + 1) ¯
2
¯ ¯ ¯ ¯
¯ −3x2 ¯ ¯ x ¯
¯
= ln ¯ √ ¯ +C = ln ¯¯ √ ¯+
2x(x + 2 + 2 x2 + x + 1) ¯ x + 2 + 2 x2 + x + 1 ¯
¯ ¯
¯ x + 2 + 2 √ x2 + x + 1 ¯ µ
3
¶
¯ ¯
+C̃ = − ln ¯ ¯ + C̃, C̃ = C + ln .
¯ x ¯ 2
Òàêèì îáðàçîì, âíå çàâèñèìîñòè îò çíàêà x, ïîëó÷àåì:
¯ ¯
Z
dx ¯ x + 2 + 2 √ x2 + x + 1 ¯
¯ ¯
√ = − ln ¯ ¯ + C.
2
x x +x+1 ¯ x ¯
Страницы
- « первая
- ‹ предыдущая
- …
- 58
- 59
- 60
- 61
- 62
- …
- следующая ›
- последняя »
