ВУЗ:
Составители:
Рубрика:
= −
1
sgn x
ln
¯
¯
¯
¯
¯
1
x
+
1
2
+
r
1 +
1
x
+
³
1
x
´
2
¯
¯
¯
¯
¯
+ C =
= −
1
sgn x
ln
¯
¯
¯
¯
¯
x + 2
2x
+
√
x
2
+ x + 1
|x|
¯
¯
¯
¯
¯
+ C = I.
x > 0
I = −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
2x
¯
¯
¯
¯
¯
+ C =
= −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+
˜
C, (
˜
C = C + ln 2).
x < 0
I = ln
¯
¯
¯
¯
¯
x + 2 − 2
√
x
2
+ x + 1
2x
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
¯
(x + 2 − 2
√
x
2
+ x + 1)(x + 2 + 2
√
x
2
+ x + 1)
2x(x + 2 + 2
√
x
2
+ x + 1)
¯
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
(x + 2)
2
− 4(x
2
+ x + 1)
2x(x + 2 + 2
√
x
2
+ x + 1)
¯
¯
¯
¯
+ C =
= ln
¯
¯
¯
¯
−3x
2
2x(x + 2 + 2
√
x
2
+ x + 1)
¯
¯
¯
¯
+C = ln
¯
¯
¯
¯
x
x + 2 + 2
√
x
2
+ x + 1
¯
¯
¯
¯
+
+
˜
C = −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+
˜
C,
µ
˜
C = C + ln
3
2
¶
.
x
Z
dx
x
√
x
2
+ x + 1
= −ln
¯
¯
¯
¯
¯
x + 2 + 2
√
x
2
+ x + 1
x
¯
¯
¯
¯
¯
+ C.
60 ¯ ¯ 1 ¯1 1 r 1 ³ 1 ´2 ¯¯ ¯ =− ln ¯ + + 1 + + ¯+C = sgn x ¯ x 2 x x ¯ ¯ ¯ 1 ¯ x + 2 √ x2 + x + 1 ¯ ¯ ¯ =− ln ¯ + ¯ + C = I. sgn x ¯ 2x |x| ¯ Ïðè x > 0: ¯ ¯ ¯ x + 2 + 2 √ x2 + x + 1 ¯ ¯ ¯ I = − ln ¯ ¯+C = ¯ 2x ¯ ¯ ¯ ¯ x + 2 + 2 √ x2 + x + 1 ¯ ¯ ¯ = − ln ¯ ¯ + C̃, (C̃ = C + ln 2). ¯ x ¯ Ïðè x < 0: ¯ ¯ ¯ x + 2 − 2√x2 + x + 1 ¯ ¯ ¯ I = ln ¯ ¯+C = ¯ 2x ¯ ¯ ¯ ¯ (x + 2 − 2√x2 + x + 1)(x + 2 + 2√x2 + x + 1) ¯ ¯ ¯ = ln ¯ √ ¯+C = ¯ 2 2x(x + 2 + 2 x + x + 1) ¯ ¯ ¯ ¯ (x + 2)2 − 4(x2 + x + 1) ¯ = ln ¯¯ √ ¯+C = 2x(x + 2 + 2 x + x + 1) ¯ 2 ¯ ¯ ¯ ¯ ¯ −3x2 ¯ ¯ x ¯ ¯ = ln ¯ √ ¯ +C = ln ¯¯ √ ¯+ 2x(x + 2 + 2 x2 + x + 1) ¯ x + 2 + 2 x2 + x + 1 ¯ ¯ ¯ ¯ x + 2 + 2 √ x2 + x + 1 ¯ µ 3 ¶ ¯ ¯ +C̃ = − ln ¯ ¯ + C̃, C̃ = C + ln . ¯ x ¯ 2 Òàêèì îáðàçîì, âíå çàâèñèìîñòè îò çíàêà x, ïîëó÷àåì: ¯ ¯ Z dx ¯ x + 2 + 2 √ x2 + x + 1 ¯ ¯ ¯ √ = − ln ¯ ¯ + C. 2 x x +x+1 ¯ x ¯
Страницы
- « первая
- ‹ предыдущая
- …
- 58
- 59
- 60
- 61
- 62
- …
- следующая ›
- последняя »