ВУЗ:
Составители:
Рубрика:
I.
Z
dx = x + C.
II.
Z
x
n
dx =
x
n+1
n + 1
+ C, n 6= −1.
III.
Z
dx
x
= ln |x| + C, (x 6= 0).
IV.
Z
dx
1 + x
2
=
(
arctg x +C,
−arcctg x +C.
V.
Z
dx
√
1 − x
2
=
(
arcsin x +C,
−arccos x +C.
VI.
Z
a
x
dx =
a
x
ln a
+ C (a > 0, a 6= 1),
Z
e
x
dx = e
x
+ C.
VII.
Z
sin x dx = −cos x + C.
VIII.
Z
cos x dx = sinx + C.
IX.
Z
dx
sin
2
x
= −ctgx + C.
X.
Z
dx
cos
2
x
= tgx + C.
XI.
Z
sh xdx = chx + C. XII.
Z
ch xdx = shx + C.
XIII.
Z
dx
sh
2
x
= −cthx + C. XIV.
Z
dx
ch
2
x
= thx + C.
8 ÒÀÁËÈÖÀ ÏÐÎÑÒÅÉØÈÕ ÈÍÒÅÃÐÀËÎÂ Z I. dx = x + C. Z xn+1 II. xn dx = + C, n 6= −1. n+1 Z dx III. = ln |x| + C, (x 6= 0). x Z ( dx arctg x +C, IV. 2 = 1+x − arcctg x +C. Z ( dx arcsin x +C, V. √ = 1−x 2 − arccos x +C. Z ax VI. ax dx = + C (a > 0, a 6= 1), ln a Z ex dx = ex + C. Z VII. sin x dx = − cos x + C. Z VIII. cos x dx = sinx + C. Z dx IX. = −ctgx + C. sin2 x Z dx X. = tgx + C. cos2 x Z Z XI. sh xdx = chx + C. XII. ch xdx = shx + C. Z Z dx dx XIII. 2 = −cthx + C. XIV. = thx + C. sh x ch2 x
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »