ВУЗ:
Составители:
Рубрика:
I.
Z
dx = x + C.
II.
Z
x
n
dx =
x
n+1
n + 1
+ C, n 6= −1.
III.
Z
dx
x
= ln |x| + C, (x 6= 0).
IV.
Z
dx
1 + x
2
=
(
arctg x +C,
−arcctg x +C.
V.
Z
dx
√
1 − x
2
=
(
arcsin x +C,
−arccos x +C.
VI.
Z
a
x
dx =
a
x
ln a
+ C (a > 0, a 6= 1),
Z
e
x
dx = e
x
+ C.
VII.
Z
sin x dx = −cos x + C.
VIII.
Z
cos x dx = sinx + C.
IX.
Z
dx
sin
2
x
= −ctgx + C.
X.
Z
dx
cos
2
x
= tgx + C.
XI.
Z
sh xdx = chx + C. XII.
Z
ch xdx = shx + C.
XIII.
Z
dx
sh
2
x
= −cthx + C. XIV.
Z
dx
ch
2
x
= thx + C.
8
ÒÀÁËÈÖÀ ÏÐÎÑÒÅÉØÈÕ ÈÍÒÅÃÐÀËÎÂ
Z
I. dx = x + C.
Z
xn+1
II. xn dx = + C, n 6= −1.
n+1
Z
dx
III. = ln |x| + C, (x 6= 0).
x
Z (
dx arctg x +C,
IV. 2
=
1+x − arcctg x +C.
Z (
dx arcsin x +C,
V. √ =
1−x 2 − arccos x +C.
Z
ax
VI. ax dx = + C (a > 0, a 6= 1),
ln a
Z
ex dx = ex + C.
Z
VII. sin x dx = − cos x + C.
Z
VIII. cos x dx = sinx + C.
Z
dx
IX. = −ctgx + C.
sin2 x
Z
dx
X. = tgx + C.
cos2 x
Z Z
XI. sh xdx = chx + C. XII. ch xdx = shx + C.
Z Z
dx dx
XIII. 2 = −cthx + C. XIV. = thx + C.
sh x ch2 x
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »
