Автоматизированный контроль аналоговых интегральных микросхем. Крылов В.П. - 39 стр.

UptoLike

Составители: 

39
В ходе решения диагностических задач контроля точности была
изучена структура реальных симметричных схем действия факторов,
отличающихся многоуровневым характером. Для их описания пред-
лагается использовать связные ациклические направленные графы
выходящие или корневые деревья
10
. Каждому ребру графа ставится в
соответствие определенная составляющая технологической погреш-
ности. Статистические характеристики составляющих погрешностей
входят в набор инвариантов графа, т.е. чисел, которые принимают
одно и то же значение на любом графе, изоморфном данному. Соот-
ношения для центральных моментов образуют систему уравнений:
D(Y
1
) = D(u) + D(v
1
);
D(Y
2
) = D(u) + D(v
2
);
cov(Y
1
, Y
2
) = D(u);
µ
3
(Y
1
) = µ
3
(u) + µ
3
(v
1
);
µ
3
(Y
2
) = µ
3
(u) + µ
3
(v
2
);
µ
12
(Y
1
, Y
3
) = µ
3
(u);
µ
4
(Y
1
) = µ
4
(u) + µ
4
(v
1
) + 6D(u)D(v
1
);
µ
4
(Y
2
) = µ
4
(u) + µ
4
(v
2
) + 6D(u)D(v
2
);
µ
22
(Y
1
, Y
2
) = µ
4
(u) + D(u)[D(v
1
) + D(v
2
)] + D(v
1
)D(v
2
),
(3.3)
где D(x) дисперсия (второй основной центральный момент, или
квадрат среднеквадратичного отклонения с.к.о.) случайной вели-
чины x, в качестве которой могут быть Y
1
, Y
2
, u, v
1
, v
2
; cov(Y
1
, Y
2
)
ковариация мешанный центральный момент второго порядка) слу-
чайных величин Y
1
и Y
2
; µ
3
(x) третий основной центральный мо-
мент случайной величины x; µ
12
(Y
1
, Y
2
) смешанный центральный
момент третьего порядка; µ
4
(x) четвертый основной центральный
момент случайной величины x; µ
22
(Y
1
, Y
2
) смешанный централь-
ный момент четвертого порядка.
Для наглядности введем дополнительные ограничения:
разрешенными будем считать пути епи) от точки 0 к точкам
Y1, Y2 согласно направленности графа;
разрешенные пути от источника 0 до вершин с нулевой полу-
степенью исхода будем именовать полными путями;
10
Харари Ф. Теория графов / Пер. с англ. М.: Мир, 1977. 900 с.