Задачи по электродинамике. Часть 1. Стационарные электромагнитные поля. Крыловецкая Т.А - 18 стр.

UptoLike

Принцип суперпозиции полей
Задача 2.14. Решить задачи 2.7 и 2.8, воспользовавшись принципом
суперпозиции полей и представив незаряженную полость как область с
положительным и отрицательным зарядом одинаковой величины.
Задача 2.15. В шаре, равномерно заряженном по объему с постоянной
плотностью ρ, имеется сферическая полость, центр которой отстоит от
центра шара на расстояние h. Полость находится целиком внутри шара.
Найти напряженность поля внутри полости.
Решение.
&%
'$
r
r
r
¢
¢
¢
¢¸
¡
¡
¡µ
H
HY
h
r
п
r
Искомое поле можно представить в виде
суперпозиции полей, создаваемых шаром
без полости, равномерно заряженным с
плотностью ρ, и «шаром-полостью»
равномерно заряженным с плотностью
(ρ):
E =
4
3
πρr
4
3
πρr
п
=
4
3
πρh.
Как видно из ответа, поле внутри поло-
сти однородное.
Ответ: E(r) =
4
3
πρh.
Задача 2.16. Исходя из принципа суперпозиции (см. уравнения (18),
(19)), найти поле, создаваемое в вакууме прямолинейным равномерно
заряженным с линейной плотностью τ проводом длиной 2l. Рассмотреть
случай l À r. Сравнить с результатом, полученным по теореме Гаусса.
6
r
r
r
r
r
(r,z)
0
l
ξ
-l
¡
¡
¡
¡
¡
¡
¡
¡
¡
z
r
Решение.
Если начало цилиндрической систе-
мы координат поместить в середине
отрезка, а ось z направить вдоль
него, то для произвольной точки
(r, z) поля, исходя из принципа су-
перпозиции, имеем
ϕ =
+l
Z
l
τ
p
r
2
+ (z ξ)
2
.
18
                    Принцип суперпозиции полей
Задача 2.14. Решить задачи 2.7 и 2.8, воспользовавшись принципом
суперпозиции полей и представив незаряженную полость как область с
положительным и отрицательным зарядом одинаковой величины.
Задача 2.15. В шаре, равномерно заряженном по объему с постоянной
плотностью ρ, имеется сферическая полость, центр которой отстоит от
центра шара на расстояние h. Полость находится целиком внутри шара.
Найти напряженность поля внутри полости.
   Решение.
                               Искомое поле можно представить в виде
                               суперпозиции полей, создаваемых шаром
                               без полости, равномерно заряженным с
                   '$
                               плотностью ρ, и «шаром-полостью» –
                      r rп
                      H
                      YHr      равномерно заряженным с плотностью
                   ¢¢̧ ¡
                       µ
                r¢&%
                   ¡h
                ¢r
                 ¡
                               (−ρ):
                                         4     4      4
                                      E = πρr − πρrп = πρh.
                                         3     3      3
                                 Как видно из ответа, поле внутри поло-
                                 сти однородное.
                                            4
                          Ответ:    E(r) = πρh.
                                            3
Задача 2.16. Исходя из принципа суперпозиции (см. уравнения (18),
(19)), найти поле, создаваемое в вакууме прямолинейным равномерно
заряженным с линейной плотностью τ проводом длиной 2l. Рассмотреть
случай l À r. Сравнить с результатом, полученным по теореме Гаусса.
       z6
                                   Решение.
                r         (r,z)    Если начало цилиндрической систе-
                        r
                      ¡
                       ¡           мы координат поместить в середине
                    ¡              отрезка, а ось z направить вдоль
                  ¡
                ¡                  него, то для произвольной точки
              ¡
       l r ¡¡                      (r, z) поля, исходя из принципа су-
       ξ¡r                         перпозиции, имеем

     0    r                                  Z+l
                                                       τ dξ
                                        ϕ=         p              .
                                                    r2 + (z − ξ)2
          r                                  −l
     -l

                                 18