Составители:
Рубрика:
χ
2
=
(
)
∑
−
k
ч
i
ii
2
np
npn
, (106)
где п – общее число наблюдаемых изделий; р
i
= п
i
/п частость i-го интервала
статистического ряда; k – число интервалов статистического ряда;
k
r
(u) =
(
)
()
/2Г2
2/r
u/21r/2
r
eu
−−
, (107)
где r = k – 1 – число степеней свободы распределения.
Если вероятность Р(χ
2
≤ ∆ < 0,1) ≥ 0,1 , то экспериментальное распреде-
ление соответствует теоретическому.
По критерию Колмогорова соответствие теоретического и эксперимен-
тального распределений проверяется по выполнению условия
D
1≤k , (108)
где D – наибольшее отклонение теоретической кривой распределения от экс-
периментальной; k – общее количество экспериментальных точек.
Пример 3.9. В результате опыта получен следующий вариационный ряд
времени исправной работы в часах:
2; 3; 3; 5; 6;
7; 8; 8; 9; 9;
13; 15; 16; 17; 18;
20; 21; 25; 28; 35;
37; 53; 56; 69; 77;
86; 98; 119.
Требуется установить закон распределения времени безотказной работы.
Решение:
Общее число отказов ∑п
i
= 28.
Заполняем табл. 5 по форме табл. 4.
Таблица 5
Статистические данные об отказах
∆t
i
, час 0 – 20 20 – 40 40 – 60 60 – 80 80 – 100 100 – 120
n(∆t
i
) 16 5 2 2 2 1
λ(∆t
i
), 1/час 0,0400 0,0263 0,0167 0,0250 0,0500 ―
Строим гистограмму λ(t) (cм. рис. 11).
λ(∆t)
λ
ср
0 t
Рис. 11
36
Страницы
- « первая
- ‹ предыдущая
- …
- 34
- 35
- 36
- 37
- 38
- …
- следующая ›
- последняя »