ВУЗ:
Составители:
Рубрика:
151
,
)0;(
)0(
=⇒
=
=
UEГНУИ
E
E
s
s
s
∆
∆
(3.6.18)
где
)0( =
s
E∆ – определитель схемы на рис. 3.6.7,а при нейтрализованном
источнике
E
s
; )0;(
=
⇒ UEГНУИ
s
∆ – определитель этой же схемы, в которой
ГНУИ перемещен на место ЭДС
E
s
, а приемник напряжения U заменен
короткозамкнутым проводником. Легко проверить, что (3.6.18) соответствует
САВ в строке 7 табл. 3.6.1.
Пятая часть теоремы 3.6.1 о компенсации независимого источника тока
J
s
доказывается аналогично приведенному выше доказательству теоремы 3.6.1
для источника ЭДС. Следствием этой части теоремы является формула для
J
s
,
подобная (3.6.18), которая сформирована с помощью схемы на рис. 3.6.7,б,
полученной из схемы на рис. 3.6.7,а путем замены УИ
E
s
U на УИ J
s
U,
,
)0;(
)0(
=⇒
=
=
UJГНУИ
J
J
s
s
s
∆
∆
(3.6.19)
где
)0( =
s
J∆ – определитель схемы на рис. 3.6.7,б при нейтрализованном
искомом источнике
J
s
. Знаменатель (3.6.19) определен так же, как аналогичное
выражение в формуле (3.6.18).
В силу принципа взаимосоответствия [16] можно сформулировать теорему
3.6.2, которая позволяет использовать для косвенной компенсации элементов
измеренный ток произвольной наблюдаемой ветви и единичный источник тока
в качестве управляющей ветви. При записи теоремы 3.6.2 учтем следующие
пары взаимосоответствующих понятий: напряжение
↔
ток, источник ЭДС
↔
источник тока, сопротивление
↔
проводимость, параллельный
↔
последовательный, ИТУТ
↔
ИНУН, ИНУТ
↔
ИТУН. ГНУИ и ПНУИ
являются «самодуальными» элементами, поскольку каждый из них имеет
одинаковые уравнения для напряжения
U и тока I: у ГНУИ U и I – любые, у
ПНУИ
U=0, I=0.
Теорема 3.6.2
. Любой двухполюсный элемент s в ИДС рис. 3.6.8,а –
сопротивление
Z
s
, проводимость Y
s
, генераторы УИ всех четырех типов,
независимые источники ЭДС
E
s
или тока J
s
– может быть скомпенсирован в
соответствии со схемой на рис. 3.6.8,б, путем замены его ГНУИ при
одновременной фиксации в другой произвольной наблюдаемой ветви
f
измеренного в ней тока
I
f
с помощью включенного последовательно этой
наблюдаемой ветви фиксирующего двухполюсника в виде параллельного
соединения ПНУИ и источника тока с параметром
,
1
ff
I
J
I
t == (3.6.20)
Страницы
- « первая
- ‹ предыдущая
- …
- 150
- 151
- 152
- 153
- 154
- …
- следующая ›
- последняя »
