ВУЗ:
Составители:
Рубрика:
290
Задание 1. Найдите область определения и множество значений
функций ),( y
x
f
u = , заданных формулами (нарисуйте соответствующий
чертеж):
1.1.
;
4321
yaxayaxau −++=
1.2.
;arcsin
2
2
2
2
1
2
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−=
a
y
a
x
u
1.3.
).ln(cos)ln(sin
31
a
y
a
x
u
⋅=
Задание 2. Найдите частные производные первого порядка функции
),( y
x
f
U
= :
2.1. ;),(
214
3
321
aaa
a
yxayaxayxf ++=
2.2.
;cos)sin(),(
4
2
3
1
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⋅=
a
a
a
a
y
x
yxyxf
2.3.
;)(),(
)ln(
2
3
2
1
2
3
2
1
yaxa
yaxayxf
+
+=
2.4.
2
3
2
2
2
3
2
2
arctg),(
yaxa
yaxa
yxf
+
−
=
Задание 3. Найдите градиент функции ),( y
x
f
в точке М, если
).1;1(;),(
2
2
2
3
4
M
yaxa
a
yxf
+
=
Задание
4. Найдите производную функции ),( y
x
f
по направлению
l
в точке М, если
{}
.;);;();sin(),(
3221
aalMyaxaxyyxf −=+=
ππ
Задание 5. Найдите частные производные второго порядка функ-
ции ),( y
x
f
, если
.ln),(
13
13
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
+
=
yaxa
yaxa
yxf
290 Задание 1. Найдите область определения и множество значений функций u = f ( x, y ) , заданных формулами (нарисуйте соответствующий чертеж): 1.1. u = a1 x + a2 y + a3 x − a4 y ; ⎛ x2 y2 ⎞ 1.2. u = arcsin⎜⎜ 2 − 2 ⎟⎟; ⎝ a1 a2 ⎠ x y 1.3. u = ln(sin ) ⋅ ln(cos ). a1 a3 Задание 2. Найдите частные производные первого порядка функции U = f ( x, y ) : 2.1. f ( x, y ) = a1 x a3 + a2 y a 4 + a3 x a1 y a 2 ; ⎛ x a2 ⎞ 2.2. f ( x, y ) = sin( x ya1 a3 ) ⋅ cos⎜⎜ a ⎟; ⎟ ⎝y 4 ⎠ 2 + a3 y 2 ) 2.3. f ( x, y ) = (a1 x 2 + a3 y 2 ) ln(a1 x ; a 2 x 2 − a3 y 2 2.4. f ( x, y ) = arctg a 2 x 2 + a3 y 2 Задание 3. Найдите градиент функции f ( x, y ) в точке М, если a4 f ( x, y ) = ; M (1;1). a3 x 2 + a 2 y 2 Задание 4. Найдите производную функции f ( x, y ) по направлению l в точке М, если f ( x, y ) = xy sin( a1 x + a2 y ); M (π ;π ); l = {− a2 ; a3 }. Задание 5. Найдите частные производные второго порядка функ- ции f ( x, y ) , если ⎛ a x + a1 y ⎞ f ( x, y ) = ln⎜⎜ 3 ⎟⎟. a ⎝ 3 x − a y 1 ⎠
Страницы
- « первая
- ‹ предыдущая
- …
- 288
- 289
- 290
- 291
- 292
- …
- следующая ›
- последняя »