Логика. Множества. Вероятность. Лексаченко В.А. - 44 стр.

UptoLike

Составители: 

10 . Privesti k KNF (ne uprowa):
1) (a
b)
a
b ,
2)
(
a
b
)
(c
d
)
a
c
b
d ,
3) ((a
b
) (c d
))
ac
b d ,
4)
(
a b)
(c b)
(a
c b) ,
5)
(a
c
b
)
(a
b)
(c
b) ,
6)
(
a
b
c
)
a
(
b
c
)
,
7) (a (
b
c))a
b c ,
8) (
a
b
c)
(a
c
b
)
,
9) (
a
c
b
)
(
ab c)
,
10)
(
a
b)
ac
b
c .
R e x e n i e dl F =
(a
b)
(
c
d)
(a c
b d
).
F
= (a b)
((
c d) a c b
d = (
a b)
(
c d)
(a
c)bd. J
11 . Dokazat~ osnovnye sootnoxeni bulevo$i algebry: 27, 28,
31, 33, 35, 37, 39, 41, 43, 45, 47.
12 . Dokazat~ s pomow~ sokrawennyh tablic istinnosti zako-
ny logiki teoremy 2.1. Ukazanie: sm. primer 2.1.
13 .
Dokazat~ teoremy 2.3, 2.4 i sledstvie teoremy 2.4.
14 . Dokazat~, qto sekvenci Γ
`
A
vypolnets togda i tol~ko
togda, kogda vypolnets sekvenci `
V
Γ
A (pravila vvede-
ni i udaleni
i
).
15 .
Dokazat~ tavtologii trem sposobami: a) tabliqnym,
b) s pomow~ sokrawennyh tablic istinnosti (primer 2.1),
v) privod k tavtologii
|
=
A
A s pomow~ teoremy 1.3.
1) |=
(A
B)
A
C
((A B)A C
) ,
2) |= (A
B
) (
A
C)
(
(A B
)
(B
A
)(
A
C)) ,
3)
|= (A B)
(
A
C)
(A B(A C)
(
C
A)) ,
4) |= A B (C A) (A BAC) ,
5) |= (A B) (A
C
)
(
AB
C) ,
6) |= ((
A
B) A C)
AB
(
A C)
,
7) |
=
(A
B
) (A
C
)
(A B
(A
C
)(C A
))
,
8) |= (A B
A C
)
(A B
)
(
A C
)
(C
A) ,
9) |= (
A B
C A
)
(A
B)
(
A C) ,
10)
|
= ((
A
B) A
C
) A
(
B
C
) .
44