Логика. Множества. Вероятность. Лексаченко В.А. - 45 стр.

UptoLike

Составители: 

R e x e n i e . Dokaem
|
= ((AB
)
A C
)
(A
B
(A
C))
tret~im sposobom: (
A
B
)
A C
A
B
(A
C) = (
A
C
)
(A
B
A
C) = (A
C)
((
A
C)
A C
) = (A
C) (A
C). J
16 .
Dokazat~ sekvenci
A
B, B (
A C
), C
`A
B
tabliqno
(primer 2.2). Preobrazovat~ sekvenci v tavtologi po pra-
vilu vvedeni i (upr. 14) i dokazat~ ee: a) s pomow~
sokrawennyh tablic istinnosti, b) s pomow~ teoremy 3.1.
17 . Dokazat~ sekvencii kak v upr. 16.
1)
(
A
B
)
A
C, A
B C
|
=
A
B
(
B
C) ;
2) (A
B
)
(
B
C
)
,
(B
C) (
B
C)
|
= (
A
B
) (B
C
) ;
3) A
B
C, C (
A
B
)
|=
A
B
(A
B) ;
4) A B
C,
(B
C)
(A
B
) |
=
A
(A
B) ;
5)
(A
B)
B, B (A
C)
|
= (
A B) (A
C
) ;
6)
A
(B
A), (A B)
C |= ( A
B
)
((
A C) A
) ;
7) C
(
A
B
),
C
(A
B) |= A
B
(AB) ;
8)
A
(A B
)
, B
(A C) |= (A B) (C A) ;
9)
((A B)
(A
B
))
A,
(A B)
(BC
) |= (A
B
)
B
C ;
10) A (B
C)
,
(
A
C)
(
B C)(A
B
C
)
|
=
A
(
B
(A C)).
R e x e n i e dl A
B, B
C |= A
B C
(
A
B
(
A C
))
. Prime-
n pravilo vvedeni
i
(upr. 14), poluqim tavtologi
|=
A B
(
B
C
A
B C
(A
B
(
A
C
)), kotoru dokaem s
pomow~ teoremy 3.1:
A BB
C
A
B
C (
A
B
(
A
C
)) =
= A
B
B
C
A
B
C
(A
B
(A C)) = 1
. J
18 .
Dl zadannogo vyvoda napisat~ analiz k kado$i stroke i
postroit~ derevo vyvoda (sm. primer 2.3).
1)
1
. B |
=
A
B 4.
|
=
B
A
A
B 7
. A
B
|=
B A
2. A
|
= A B 5
. A
|
= B
A
8.
|= A
B
B A
3. B
A |
= A
B
6. B
|
= B
A
9
.
|=
A
B
B
A .
2)
1. A
|
= A
4
.
|
=
A
(
A
B) A 7.
|
= A
(
A
B)
A .
2
. AB |=
A 5
. A |=
A (
A
B)
3
. A
(
A
B
) |
= A 6.
|
=
A
A (
AB
)
3)
1. A
(BC
) |
=
A
5. A
(B
C
) |
=
B
9. A
B, C |= (A
B
)C
2. A
(B
C) |=
B
C
6
. A
(B
C
)
|=
C
10
. A
(
BC)
|
= (
AB
)
C
3. B
C |
=
B 7
. A, B |
=
AB
11.
|= A(B
C)
4. BC
|
=
C 8. A
(
B
C
) |= AB
(A
B
)
C.
45