Логика. Множества. Вероятность. Лексаченко В.А. - 46 стр.

UptoLike

Составители: 

4)
1. A
(A
B) |
= A 4. A
|=
A
B 7
. |=
A
A
(
A
B
)
2
. |=
A(A B)
A 5
. A, A B
|=A
(
A
B) 8
.
|
=
A
A
(
A B)
.
3. A
|= A
6. A |= A(A
B
)
5)
1.
A
B, A |
=
A
B 4.
A
B, B |
=
A
B 7.
A, B
|
= A
B
2. A
B, A |=
A
B 5.
A
B, B |=
A
B 8.
A
B |=
AB
3. A
B |= A
6
. A
B |= B
9
. |= A
B A
B .
6)
1. A
|
= A
4
. A, A
|
= A
7
. |
=
A A .
2
. |
=
A
A
5
. A |= A
3
. A, A
|
=
A
6
. |=
A A
7)
1.
A, A
B
|= A 4.
B, A
B
|= B 7.
A
B
|
= A
B
2
. A, AB
|=
A 5. B, AB
|=
B 8.
|=
A B AB .
3
.
A
|=
A
B
6
.
B
|=
A
B
8)
1. A
B
|
=
B 5. |
= A
B
B
A
9
. BA
|=
AB
2
. A
B |=
A 6
. B
A
|=
A 10.
|
= BA
A
B
3. B, A |
=
BA
7. BA
|=
B
11
. |
= A
B
B
A .
4. A
B
|
=
B
A 8. A, B |= A
B
9)
1. A A, A |
= A
A 4
.
A A, A |
= A
A 7
. |=
A A
2
.
A A, A |
=
A A 5
.
A A, A |
=
A A 8
. |
= A
A .
3
.
A A |
=
A 6
.
A A |
=
A
10)
1. A
A |= A 4. A, A |=
A
A 7.
|= A
A
A .
2
.
|
=
A
A
A
5. A |=
A
A
3
. A |
=
A 6
. |
= A
A
A
19 .
Metodom rezolci$i dokazat~ tavtologii (sm. primer 2.4).
1) |
= (
A
B)A
B ,
2)
|= (A
B)(
C D
) (AC B
D
) ,
3) |
= (A
B) (C
D) (
AC
B D) ,
4)
|= (A
B
)
(
C
B
)
(A
C
B) ,
5) |= (
A
C
B
) (A B
)
(
C
B
)
,
6) |
= (
AB
C
) (A (
B C)) ,
7) |
= (
A (
B
C))
(
AB
C
) ,
8)
|= (A
B
C
)
(
A
C B) ,
9) |= (A
C B)
(A
B C
)
,
10)
|
= (A
B)
(
A
C
B
C) .
46