Логика. Множества. Вероятность. Лексаченко В.А. - 64 стр.

UptoLike

Составители: 

4. Posledovatel~nosti mnoestv i ih predely
Opredelenie 4.1 (Sqetnye obedineni i pereseqeni). Dl
vsko$i posledovatel~nosti {
A
n
}
n
=1
podmnoestv prostranstva
[
n=1
A
n
{x
: (
n
)(
x A
n
)
}
,
\
n=1
A
n
{x
: (n
)(x A
n
)
}.
Teorema 4.1 (Svo$istva sqetnyh obedineni$i i pereseqeni$i).
1)
[
n
=1
(
A
n
B
n
) =
[
n=1
A
n
[
n
=1
B
n
, 2)
\
n=1
(
A
n
B
n
) =
\
n=1
A
n
\
n
=1
B
n
,
3)
[
n
=1
(A
n
B
n
)
[
n=1
A
n
\
n=1
B
n
,
4)
\
n=1
(
A
n
B
n
)
\
n=1
A
n
\
n
=1
B
n
,
5)
[
n=1
(A
B
n
) = A
[
n
=1
B
n
,
6)
\
n
=1
(
A
B
n
) = A
\
n
=1
B
n
,
7)
[
n=1
(
A
B
n
) =
A
[
n
=1
B
n
,
8)
\
n
=1
(
A
B
n
) =
A
\
n=1
B
n
,
9)
[
n
=1
A
n
=
\
n
=1
A
n
,
10)
\
n
=1
A
n
=
[
n
=1
A
n
,
11)
f
[
n
=1
A
n
!
=
[
n
=1
f(
A
n
) ,
12)
f
\
n
=1
A
n
!
\
n=1
f(
A
n
) ,
13)
f
1
[
n=1
B
n
!
=
[
n
=1
f
1
(B
n
)
, 14) f
1
\
n
=1
B
n
!
=
\
n=1
f
1
(
B
n
)
.
D o k a z a t e l ~ s t v o .
8
. [
x
\
n
=1
(A
B
n
)] = [(n)((
x
A)
(x
B
n
))] =
= [(
x
A)
(n)(
x
B
n
)] = [(x
A)
(x
\
n=1
B
n
)] = [
x
A
\
n=1
B
n
].
9. [x
[
n
=1
A
n
] = [
(n)(
x A
n
)] = [(n)
x A
n
] = [
x
\
n
=1
A
n
]
.
14. x
f
1
\
n=1
B
n
!
=f(x)
\
n=1
B
n
=(
n)(x
f
1
(
B
n
))=x
\
n
=1
f
1
(
B
n
).
Opredelenie 4.2 (Predely posledovatel~noste$i mnoestv).
Verhnim
(
ninim
)
predelom posledovatel~nosti mnoestv
{A
n
}
n=1
nazyvaets mnoestvo lim sup
n
A
n
T
n=1
S
k=
n
A
k
,
( lim inf
n
A
n
S
n
=1
T
k
=
n
A
k
)
. Esli lim sup
n
A
n
= lim inf
n
A
n
,
to suwestvuet predel
lim
n
A
n
lim sup
n
A
n
=lim inf
n
A
n
.
64