Логика. Множества. Вероятность. Лексаченко В.А. - 65 стр.

UptoLike

Составители: 

Teorema 4.2 (Svo$istva predelov posledovatel~noste$i mno-
estv).
Esli suwestvuet
lim
n
→∞
B
n
, to pri lbom A
suwestvut
predely
lim
n
→∞
(A B
n
)
, lim
n→∞
(
A
B
n
),
lim
n
→∞
(A
\
B
n
)
,
lim
n
→∞
(
B
n
\A)
i
1) lim
n→∞
(
A B
n
) = A
lim
n
→∞
B
n
, 2) lim
n→∞
(
A
B
n
) = A
lim
n→∞
B
n
,
3) lim
n
→∞
(A\
B
n
) = A\ lim
n
→∞
B
n
,
4) lim
n
→∞
(B
n
\A) = ( lim
n
→∞
B
n
)\
A .
D o k a z a t e l ~ s t v o . 1. Po teoreme 4.1
lim sup
n
(
A
B
n
)
T
n
=1
S
k=
n
(A B
k
) =
T
n=1
(A
S
k=
n
B
k
) = A
T
n=1
S
k= n
B
k
=
=
A
lim sup
n
B
n
) i
lim inf
n
A
n
S
n=1
T
k
=n
(A
B
k
) =
=
S
n
=1
(
A
T
k=
n
B
k
) =
A
S
n
=1
T
k =n
B
k
= A lim inf
n
B
n
, otku-
da sleduet, qto
lim
n
→∞
(
A B
n
) =
A
lim
n→∞
B
n
. Analogiqno
dokazyvats pp. 2 4. J
Opredelenie 4.3 (Monotonnye posledovatel~nosti mnoestv).
Posledovatel~nost~ mnoestv {A
n
}
n=1
nazyvaets monotonno
vozrastawe$i
(MVP), esli A
n
A
n+1
pri vseh
n;
monotonno
ubyvawe$i
(
MUP
),
esli
A
n
A
n+1
pri vseh n
.
Teorema 4.3 (Predely monotonnyh posledovatel~noste$i).
Dl MVP lim
n→∞
A
n
=
[
n=1
A
n
, dl MUP lim
n
→∞
A
n
=
\
n=1
A
n
.
D o k a z a t e l ~ s t v o .
lim sup
n→∞
A
n
\
n
=1
B
n
, lim inf
n→∞
A
n
[
n
=1
C
n
, gde
B
n
=
[
k
=n
A
k
C
n
=
\
k
=n
A
k
. Dl MVP
B
n
=
[
k
=n
A
k
=
A
n
[
k
=n+1
A
k
=
[
k=n
+1
(
A
n
A
k
) =
[
k
=
n
+1
A
k
=
B
n
+1
,
C
n
=
\
k=n
A
k
= A
n
\
k=n+1
A
k
=
\
k
=
n
+1
(A
n
A
k
) =
\
k
=n
+1
A
n
= A
n
.
Potomu lim sup
n
→∞
A
n
= B
1
=
[
n=1
A
n
=
[
n=1
C
n
= lim inf
n→∞
A
n
= lim
n
→∞
A
n
.
Dl MUP
B
n
=
[
k
=n
A
k
=
A
n
[
k
=
n
+1
A
k
=
[
k
=n+1
(A
n
A
k
) =
[
k
=n+1
A
n
= A
n
,
C
n
=
\
k
=
n
A
k
= A
n
\
k
=
n
+1
A
k
=
\
k
=
n+1
(
A
n
A
k
) =
\
k
=
n+1
A
k
= C
n
+1
.
Potomu
lim sup
n
→∞
A
n
=
\
n
=1
B
n
=
\
n=1
A
n
= C
1
= lim inf
n→∞
A
n
= lim
n→∞
A
n
. J
65