Логика. Множества. Вероятность. Лексаченко В.А. - 72 стр.

UptoLike

Составители: 

6) [A
B
= A
B
] [A =
B
]
,
7) [A
B]
[(
A
\C)
(
B
\
C
)] ,
8) [
A
(B
C
)]
[(
A
B)
(
AC)] ,
9) [(
B
\
A)
C
] [A
(
B
C
)] ,
10) [
AB
]
[(
A
C
)(
B
C)]
.
R e x e n i e dl [(A\
B
) B
) = A]
[B
A
].
[(
A\
B)
B
=
A
]
[(
A
B
)
B = A
] [(A
B
)
(B
B
) = A]
[(A
B
)
=
A
]
[A
B
= A]
(
BA
)
. J
3 . Dokazat~ ravenstva:
1) (A
\B)×(C
D) = (A×
C)
(B
×D
) ,
2) (A
\
B)×
(C
\
D) = (A
×
C
)
(B
×
D
)
,
3) (A B
)
×(
C
D
) = (
A
×
C)
(
B
×
D) ,
4)
A×
B
C
= (
A
×
B
)
(
A
×
C
)
,
5) A
B
×C
= (A
×
C
)
(B
×
C
) ,
6) A×(B
\
C) = (A
×
B)
(A
×
C) ,
7) A
B×C
= (
A
×
C)
(
B
×
C) ,
8) (A\
B
)×C
= (
A×C
) (
B
×C
)
,
9) A×
(
B
\
C
) = (A×
B)
\
(A
×C
) ,
10) (
A\
B
)×C
= (A
×
C)\
(
B
×
C
)
.
R e x e n i e dl
(
A B)
×
(
C\D
) = (
A
×
C
)
(B×
D)
.
(
x, y) (A
B
)×
×(C\D
) = (
x A
B)
(y
C
\
D) = (x A
)
(x
B)
(y
C
)
(y / D
) =
= ((x, y
) A×
B
)((
x, y
) B
×D
) = (x, y)
(A×
C)
(
B×D
). J
4
.
Dl sleduwih binarnyh otnoxeni$i na
R postroit~ gra-
fiki, na$iti oblast~ opredeleni i oblast~ znaqeni$i.
1)
x
6
y,
2) x
= y,
3)
x < y, 4)
x
2
+ y
2
61
, 5) x =
y
2
,
6) x
2
= y, 7)
x
2
= y
2
, 8) |
x y
|
= 1, 9) y6
log
2
x,
10) tg
x = 1.
Kakie iz tih otnoxeni$i vlts otnoxenimi kvivalentnos-
ti, pordka, funkcional~nymi otnoxenimi?
5 . Pust~
f : M
R
nepreryvna de$istvitel~na funkci,
opredelenna na
M
= [
a
1
, b
1
]×···×[
a
n
, b
n
]. Dokazat~, qto otno-
xenie
R
f
= {
(
x
,
y )
M
2
: f(x)
>
f
(
y )} vlets otnoxeniem pred-
pordka v
M .
6 .
Opredelit~ qislo razliqnyh otobraeni$i f : A
B koneq-
nyh mnoestv A, B . Pri kakih uslovih suwestvut srek-
cii, inekcii i biekcii? Opredelit~ qislo biekci$i?
7 . Dokazat~, qto intervaly
(a; b
) i (
c
; d
) pri koneqnyh
a, b, c, d (
a < b, c < d
) ravnomowny.
72