Логика. Множества. Вероятность. Лексаченко В.А. - 85 стр.

UptoLike

Составители: 

Tablica 2
Nekotorye nepreryvnye raspredeleni
f
(
x) =
1
b a
, x
[
a, b]
,
0, x /
[a, b
].
α
1
=
a +
b
2
−∞ < a < b <
µ
2
=
(
b a)
2
12
f(
x) =
1
2πσ
e
(
x m)
2
2σ
2
. α
1
= m
−∞ < m <
, 0 < σ <
µ
2
=
σ
2
f(
x
) =
1
2
π
e
(ln
x
m)
2
2
σ
2
, x
(0, )
,
0
, x /
(0
,
)
.
α
1
=
e
m+
σ
2
/
2
−∞
< m <
, 0
< σ < α
2
= e
2m+2
σ
2
f
(x
) =
(
λ
η
Γ
(η
)
x
η
1
e
λx
, x
(0,
)
,
0
, x /
(0
,
).
α
1
=
η
λ
0
< λ <
,
0
< η <
µ
2
=
η
λ
2
η =
n
2
, λ =
1
2
χ
2
n
t f(
x
) =
Γ
((
n + 1)/2)
Γ (n/
2)
1 +
t
2
n
(
n
+1)/
2
. α
1
= 0
n
−∞
< x <
µ
2
=
n
n
2
f
(x) =
n
cx
c
1
, x
(1
,
),
0, x / (1, ).
α
1
=
c
c
1
2
< c <
α
2
=
c
c
2
V tabl. 2 Γ
(z)
R
0
t
z1
e
t
dt
gamma-funkci.
Normal~noe raspredelenie s
α
1
= m, µ
2
=
σ
2
i ego fun-
kci raspredeleni i plotnost~ oboznaqats, sootvetstvenno,
simvolami
N(m, σ
2
)
,
N(
x|
m, σ
2
), n(x
|m, σ
2
)
, priqem
N(x|
m, σ
2
) =
= Φ
x m
σ
, gde Φ(x
) =
1
2
π
R
x
−∞
e
t
2
/
2
dt
funkci Laplasa.
85