Задачи по теоретической механике. Манаков Н.Л - 54 стр.

UptoLike

2
U
q
2
¯
¯
¯
¯
q=q
0
k > 0.
q
0
ω =
r
k
m
,
x q q
0
x = a cos(ωt + α ) ,
a α
E =
1
2
2
a
2
¨x + ω
2
x =
1
m
F (t).
F (t) = f cos(γt + β)
x(t) = a cos(ωt + α) +
f
m(ω
2
γ
2
)
cos(γt + β).
F (t)
x(t) =
1
ω
Im ξ(t), ξ(t) = e
t
Z
t
t
0
F (t
0
)
m
e
t
0
dt
0
+ ξ
0
e
(tt
0
)
,
ξ
0
= ˙x(t
0
) + x(t
0
)
F (t) 0 t ±∞
E =
p
2
2m
, p =
¯
¯
¯
¯
Z
−∞
F (t)e
t
dt
¯
¯
¯
¯
f = α ˙x
¨x + 2λ ˙x + ω
2
0
x = 0, λ =
α
2m
.
λ < ω
0
x(t) = ae
λt
cos(
q
ω
2
0
λ
2
t + α).
            ¯
     ∂ 2 U ¯¯
                ≡ k > 0.                                                                       (7.2)
     ∂q 2 ¯q=q0
×àñòîòà ñâîáîäíûõ îäíîìåðíûõ êîëåáàíèé âáëèçè q0 åñòü
         r
           k
    ω=       ,                                                                                 (7.3)
           m
à çàêîí äâèæåíèÿ äëÿ ìàëîãî ñìåùåíèÿ x ≡ q − q0

    x = a cos(ωt + α),                                                                         (7.4)

ãäå a è α  àìïëèòóäà è ôàçà, îïðåäåëÿåìûå íà÷àëüíûìè óñëîâèÿìè. Ñî-
                                        1
õðàíÿþùàÿñÿ ýíåðãèÿ êîëåáàíèÿ (7.4) E =   mω 2 a2 . Ñèñòåìà, ñîâåðøàþùàÿ
                                        2
îäíîìåðíûå ãàðìîíè÷åñêèå êîëåáàíèÿ, íàçûâàåòñÿ ëèíåéíûì ãàðìîíè÷åñêèì
îñöèëëÿòîðîì èëè ïðîñòî îñöèëëÿòîðîì.
   Óðàâíåíèå îäíîìåðíûõ âûíóæäåííûõ êîëåáàíèé ïîä äåéñòâèåì âíåøíåé
ñèëû
                1
    ẍ + ω 2 x = F (t).                                              (7.5)
                m
Ðåøåíèå ýòîãî óðàâíåíèÿ ïðè F (t) = f cos(γt + β) åñòü
                                             f
    x(t) = a cos(ωt + α) +                           cos(γt + β).                              (7.6)
                                     m(ω 2    − γ 2)
Ðåøåíèå óðàâíåíèÿ (7.5) äëÿ ïðîèçâîëüíîé âíåøíåé ñèëû F (t) èìååò âèä
                                                  Z   t
          1                                 iωt           F (t0 ) −iωt0 0
    x(t) = Im ξ(t),              ξ(t) = e                        e     dt + ξ0 eiω(t−t0 ) ,    (7.7)
          ω                                       t0       m
ãäå ξ0 = ẋ(t0 ) + iωx(t0 )  íà÷àëüíûå óñëîâèÿ. Ýíåðãèÿ, ïåðåäàâàåìàÿ ïåðâî-
íà÷àëüíî ïîêîÿùåéñÿ ñèñòåìå âíåøíèì èñòî÷íèêîì (F (t) → 0 ïðè t → ±∞),
åñòü
                         ¯Z ∞               ¯
         ∆p2             ¯                  ¯
    ∆E =     , ãäå ∆p = ¯¯    F (t)e−iωt dt¯¯                                                  (7.8)
         2m                −∞

Óðàâíåíèå çàòóõàþùèõ êîëåáàíèé â ñðåäå ñ ñèëîé òðåíèÿ fòð = −αẋ
                                         α
    ẍ + 2λẋ + ω02 x = 0,         λ=      .                                                   (7.9)
                                        2m
Ðåøåíèå ýòîãî óðàâíåíèÿ ïðè λ < ω0 (òðåíèå ìàëî!)
                             q
                −λt
    x(t) = ae         cos(    ω02 − λ2 t + α).                                                (7.10)

                                                          53