Задачи по теоретической механике. Манаков Н.Л - 60 стр.

UptoLike

A = x
0
, B =
v
0
ω
a
3
x(t) = x
0
cos ωt +
³
v
0
ω
a
3
´
sin ωt +
at
2
F = F
0
e
βt
m¨x + kx = F
0
e
βt
.
Be
βt
B
Be
βt
¡
β
2
+ ω
2
¢
=
F
0
m
e
βt
,
ω =
r
k
m
x(t) = A cos(ωt + α) +
F
0
m(β
2
+ ω
2
)
e
βt
.
˙x(t) = sin(ωt + α)
βF
0
m(β
2
+ ω
2
)
e
βt
.
0 = A cos α +
F
m(β
2
+ ω
2
)
; 0 = sin α
βF
m(β
2
+ ω
2
)
.
α A
tg α =
β
ω
, A =
F
m(β
2
+ ω
2
)
1
cos α
.
α, A
x(t) =
F
0
m(β
2
+ ω
2
)
µ
e
βt
cos ωt +
β
ω
sin ωt
.
ω
0
F = F
0
cos ωt t = 0 x = 0 ˙x = 0
ω = ω
0
.
                                           v0    a
Íà÷àëüíûå óñëîâèÿ äàþò A = x0 ,       B=      −    3
                                                     .
                           ³v              ω    mω
                              0    a ´           at
Îòâåò : x(t) = x0 cos ωt +      −      sin ωt +       .
                            ω     mω 3          mω 2
Çàäà÷à 7.14. Íàéòè çàêîí êîëåáàíèé îñöèëëÿòîðà ïîä äåéñòâèåì ñèëû, ýêñ-
ïîíåíöèàëüíî óáûâàþùåé ñî âðåìåíåì. Íà÷àëüíûå çíà÷åíèÿ ñêîðîñòè è êî-
îðäèíàòû ðàâíû íóëþ.
Ðåøåíèå . Ïî óñëîâèþ ñèëà ðàâíà F = F0 e−βt , ïîýòîìó óðàâíåíèå êîëåáàíèé
èìååò âèä
    mẍ + kx = F0 e−βt .                                                           (7.18)
×àñòíîå ðåøåíèå íåîäíîðîäíîãî óðàâíåíèÿ (7.18) èùåòñÿ â âèäå Be−βt , ãäå
ïîñòîÿííàÿ B íàõîäèòñÿ ïðÿìîé ïîäñòàíîâêîé â óðàâíåíèå (7.18). Èìååì
                                  ¡         ¢ F0
                             Be−βt β 2 + ω 2 = e−βt ,
                                              m
          r
          k
ãäå ω =     . Îáùåå ðåøåíèå íåîäíîðîäíîãî óðàâíåíèÿ (7.18) åñòü
          m
                              F0
    x(t) = A cos(ωt + α) +    2   2
                                     e−βt .                                        (7.19)
                           m(β + ω )
Ñîîòâåòñòâåííî äëÿ ñêîðîñòè áóäåì èìåòü
                                                      βF0
                 ẋ(t) = −Aω sin(ωt + α) −            2   2
                                                             e−βt .
                                                   m(β + ω )
Èñïîëüçóÿ íà÷àëüíûå óñëîâèÿ ïîëó÷èì
                                F                                   βF
          0 = A cos α +                  ;   0 = −Aω sin α −                   .
                           m(β 2 + ω 2 )                         m(β 2 + ω 2 )
Îòñþäà íàõîäèì α è A â óäîáíîì äëÿ äàëüíåéøåãî âèäå
                               β                   F          1
                     tg α =      ,    A=−                         .
                               ω              m(β 2 + ω 2 ) cos α
Ïîäñòàâëÿÿ α, A â (7.19) è ïðåîáðàçóÿ, ïîëó÷èì:
                                µ                       ¶
                         F0                      β
               x(t) =    2   2
                                  e−βt − cos ωt + sin ωt .
                      m(β + ω )                  ω

Çàäà÷à 7.15. Íàéòè çàêîí êîëåáàíèé îñöèëëÿòîðà ñ ÷àñòîòîé ω0 , åñëè ñèëà
çàâèñèò îò âðåìåíè ãàðìîíè÷åñêè: F = F0 cos ωt, ïðè t = 0, x = 0, ẋ = 0.
Èññëåäîâàòü ñëó÷àé ω = ω0 .

                                             59