Задачи по теоретической механике. Манаков Н.Л - 73 стр.

UptoLike

x(t) =
p
0x
t
m
+ x
0
, y(t) =
p
0y
t
m
+ y
0
, z(t) = g
t
2
2
+
p
0z
t
m
+ z
0
.
p
0x
p
0y
p
0z
x
0
y
0
z
0
L(r, ϕ, z, ˙r, ˙ϕ, ˙z) =
m
2
( ˙r
2
+ r
2
˙ϕ
2
+ ˙z
2
) mgz,
p
r
=
L
˙r
= m ˙r, p
ϕ
=
L
˙ϕ
= mr
2
˙ϕ, p
z
=
L
˙z
= m ˙z.
H(r, ϕ, z, p
r
, p
ϕ
, p
z
) =
1
2m
Ã
p
2
r
+
p
2
ϕ
r
2
+ p
2
z
!
+ mgz.
L(r, ϑ, ϕ, ˙r ,
˙
ϑ, ˙ϕ) =
m
2
( ˙r
2
+ r
2
˙
ϑ
2
+ r
2
sin
2
ϑ ˙ϕ
2
) mgr cos ϑ,
p
r
=
L
˙r
= m ˙r, p
ϑ
=
L
˙
ϑ
= mr
2
˙
ϑ, p
ϕ
=
L
˙ϕ
= mr
2
sin
2
ϑ ˙ϕ,
H(r, ϑ, ϕ, p
r
, p
ϑ
, p
ϕ
) =
1
2m
Ã
p
2
r
+
p
2
ϑ
r
2
+
p
2
ϕ
r
2
sin
2
ϑ
!
+ mgr cos ϑ.
R = R ( t)
2α
H =
1
2mR
2
(t)
Ã
p
2
ϑ
+
p
2
ϕ
sin
2
ϑ
!
+ mgR(t) cos ϑ;
˙
ϑ =
p
ϑ
mR
2
(t)
,
˙p
ϑ
=
p
2
ϕ
cos ϑ
mR
2
(t) sin
3
ϑ
+ mgR(t) sin ϑ ˙ϕ =
p
ϕ
mR
2
(t) sin
2
ϑ
˙p
ϕ
= 0.
ϑ = α H =
1
2m
Ã
p
2
r
+
p
2
ϕ
r
2
sin
2
α
!
+ mgr cos α,
˙r =
p
r
m
, ˙p
r
=
p
2
ϕ
mr
3
sin
2
α
mg cos α, ˙ϕ =
p
ϕ
mr
2
sin
2
α
, ˙p
ϕ
= 0.
m L = mc
2
p
1 v
2
/c
2
c v ¿ c
                       p0x t                p0y t                 t2 p0z t
           x(t) =            + x0 , y(t) =        + y0 , z(t) = −g +       + z0 .
                        m                     m                   2   m
Çäåñü ïîñòîÿííûå p0x , p0y , p0z , x0 , y0 , z0 îïðåäåëÿþò çíà÷åíèÿ èìïóëüñà è
êîîðäèíàò â íà÷àëüíûé ìîìåíò âðåìåíè.
á)  öèëèíäðè÷åñêèõ êîîðäèíàòàõ:
                          m
L(r, ϕ, z, ṙ, ϕ̇, ż) = (ṙ2 + r2 ϕ̇2 + ż 2 ) − mgz,
                           2
      ∂L                     ∂L                    ∂L
pr =       = mṙ, pϕ =            = mr2 ϕ̇, pz =         = mż.
      ∂ ṙ                   ∂ ϕ̇ Ã                ∂ ż
                                                   !
                               1          p2ϕ
H(r, ϕ, z, pr , pϕ , pz ) =         pr + 2 + p2z + mgz.
                                     2
                              2m          r
â)  ñôåðè÷åñêèõ êîîðäèíàòàõ:
                                     m 2
          L(r, ϑ, ϕ, ṙ, ϑ̇, ϕ̇) =     (ṙ + r2 ϑ̇2 + r2 sin2 ϑϕ̇2 ) − mgr cos ϑ,
                                     2
                ∂L                   ∂L                   ∂L
          pr =       = mṙ, pϑ =           = mr2 ϑ̇, pϕ =       = mr2 sin2 ϑϕ̇,
                ∂ ṙ                  ∂ ϑ̇                 ∂ ϕ̇
                                           Ã                     !
                                                   2       2
                                      1          p        pϕ
         H(r, ϑ, ϕ, pr , pϑ , pϕ ) =        p2r + ϑ2 + 2 2         + mgr cos ϑ.
                                     2m          r     r sin ϑ

Çàäà÷à 8.2. Íàïèñàòü ôóíêöèþ Ãàìèëüòîíà è êàíîíè÷åñêèå óðàâíåíèÿ äëÿ
÷àñòèöû â îäíîðîäíîì ïîëå òÿæåñòè, åñëè îíà äâèæåòñÿ
   à) ïî ïîâåðõíîñòè ãëàäêîé ñôåðû ðàäèóñà R = R(t);
   á) ïî ãëàäêîé ïîâåðõíîñòè êðóãîâîãî êîíóñà ñ óãëîì 2α ïðè âåðøèíå. Êî-
íóñ ðàñïîëîæåí âåðòèêàëüíî âåðøèíîé âíèç.
Îòâåò :  îáîèõ ñëó÷àÿõÃèñïîëüçóåì!ñôåðè÷åñêèå êîîðäèíàòû.
                    1         2
                                      p2ϕ                                      pϑ
       à) H =               p ϑ  +      2     +  mgR(t)   cos  ϑ;    ϑ̇ =           ,
               2mR2 (t)             sin ϑ                                   mR2 (t)
               p2ϕ cos ϑ                                       pϕ
       ṗϑ =                 +   mgR(t)    sin ϑ , ϕ̇ =                  , ṗϕ = 0.
             mR2 (t) sin3 ϑ Ã                   !        mR 2 (t) sin2 ϑ
                                            2
                         1                p ϕ
       á) ϑ = α; H =            p2r + 2 2           + mgr cos α,
                        2m            r sin α
            pr            p2ϕ                                 pϕ
       ṙ = , ṗr =            2    −  mg   cos α,   ϕ̇ =              , ṗϕ = 0.
            m         mr3 sin α                           mr2 sin2 α
Çàäà÷à 8.3. Ñîñòàâèòü ôóíêöèþ Ãàìèëüòîíà ñâîáîäíîé ðåëÿòèâèñòñêîé
                                                          p       ֈ-
ñòèöû ñ ìàññîé ïîêîÿ m, åñëè å¼ ôóíêöèÿ Ëàãðàíæà L = −mc2 1 − v 2 /c2 ,
ãäå c  ñêîðîñòü ñâåòà. Ïîêàçàòü, ÷òî â íåðåëÿòèâèñòñêîì ïðåäåëå (v ¿ c)

                                              72