Задачи по теоретической механике. Манаков Н.Л - 77 стр.

UptoLike

p
θ
=
L
˙
θ
= (J
1
+ ml
2
)
˙
θ; p
ψ
=
L
˙
ψ
= J
3
( ˙ϕ cos θ +
˙
ψ).
H =
1
2(J
1
+ ml
2
)
·
p
2
θ
+
(p
ϕ
p
ψ
cos θ)
2
sin
2
θ
¸
+
p
2
ψ
2J
3
+ mgl cos θ.
H =
p
2
2m
( · [r × p]) + U(r)
U(r) = α/r
R = (m
1
r
1
+ m
2
r
2
)/M
r = r
1
r
2
M = m
1
+ m
2
L =
M
˙
R
2
2
+
m
˙
r
2
2
α
r
H =
P
2
2M
+
p
2
2m
+
α
r
m = m
1
m
2
/M
m
l
J
H =
p
2
θ
2(J + ml
2
)
mgl cos θ
˙
θ =
p
θ
J + ml
2
, ˙p
θ
= mgl sin θ
θ ¿ 1 θ = θ
0
cos(ωt + α),
p
θ
= (J + ml
2
)ωθ
0
sin(ωt + α) ω
2
=
mgl
J + ml
2
f(x p t) = x
p
m
t
H(x p) =
p
2
2m
df
dt
=
f
t
+ {H, f} =
p
m
+
p
m
= 0 f(x, p, t) = const.
               ∂L                            ∂L
              pθ =   = (J1 + ml2 )θ̇; pψ =        = J3 (ϕ̇ cos θ + ψ̇).
               ∂ θ̇                          ∂ ψ̇
Ïîëó÷èì âûðàæåíèå äëÿ ôóíêöèè Ãàìèëüòîíà:
                          ·                       ¸
                   1         2  (pϕ − pψ cos θ)2        p2ψ
        H=                  p +                     +       + mgl cos θ.
            2(J1 + ml2 ) θ            sin2 θ           2J3

Çàäà÷à 8.8. Íàéòè ôóíêöèþ Ãàìèëüòîíà ìàòåðèàëüíîé òî÷êè â ñèñòåìå îò-
ñ÷¼òà, ðàâíîìåðíî âðàùàþùåéñÿ ñ óãëîâîé ñêîðîñòüþ Ω.
              p2
Îòâåò : H =      − (Ω · [r × p]) + U (r).
              2m
Çàäà÷à 8.9. Ñîñòàâèòü ôóíêöèþ Ëàãðàíæà è ôóíêöèþ Ãàìèëüòîíà ñèñòåìû
äâóõ çàðÿæåííûõ ÷àñòèö, âçàèìîäåéñòâóþùèõ ïî çàêîíó Êóëîíà U (r) = α/r.
Âûðàçèòü èõ ÷åðåç êîîðäèíàòû öåíòðà ìàññ R = (m1 r1 + m2 r2 )/M è îòíîñè-
òåëüíûå êîîðäèíàòû r = r1 − r2 , (M = m1 + m2 ).
            M Ṙ2 mṙ2     α     P2   p2  α
Îòâåò : L =       +     − ;H=       +    + , çäåñü m = m1 m2 /M 
              2      2     r     2M   2m  r
       ïðèâåäåííàÿ ìàññà ÷àñòèö.

Çàäà÷à 8.10. Âûïèñàòü óðàâíåíèÿ Ãàìèëüòîíà äëÿ ôèçè÷åñêîãî ìàÿòíèêà
ìàññû m, åñëè îäíà èç ãëàâíûõ öåíòðàëüíûõ îñåé èíåðöèè ïàðàëëåëüíà îñè
âðàùåíèÿ è ïðîõîäèò íà ðàññòîÿíèè l îò íåå. Ìîìåíò èíåðöèè ìàÿòíèêà îò-
íîñèòåëüíî ýòîé îñè ðàâåí J . Ïðîèíòåãðèðîâàòü óðàâíåíèÿ äâèæåíèÿ äëÿ
ñëó÷àÿ ìàëûõ óãëîâ îòêëîíåíèÿ.
                  p2θ
Îòâåò : H =                − mgl cos θ; Óðàâíåíèÿ Ãàìèëüòîíà:
             2(J + ml2 )
               pθ
       θ̇ =           , ṗθ = −mgl sin θ ;
            J + ml2
       Ðåøåíèå äëÿ θ ¿ 1 : θ = θ0 cos(ωt + α),
                                                     mgl
       pθ = −(J + ml2 )ωθ0 sin(ωt + α), ãäå ω 2 =          .
                                                   J + ml2
                                                       p
Çàäà÷à 8.11. Ïîêàçàòü, ÷òî ôóíêöèÿ f (x,p,t) = x− t ÿâëÿåòñÿ èíòåãðàëîì
                                                      m
äâèæåíèÿ ñâîáîäíîé ÷àñòèöû.
                                                           p2
Ðåøåíèå . Ãàìèëüòîíèàí ñâîáîäíîé ÷àñòèöû H(x,p) =             . Îïðåäåëÿÿ ïîë-
                                                          2m
íóþ ïðîèçâîäíóþ ïî âðåìåíè ñîãëàñíî (8.17), ïîëó÷èì
    df   ∂f              p  p
       =    + {H, f } = − +   = 0. Ñëåäîâàòåëüíî f (x, p, t) = const.
    dt   ∂t              m m
                                        76