ВУЗ:
Составители:
Рубрика:
˙p
i
= {H, p
i
}, ˙q
i
= {H, q
i
}.
p
i
q
i
→ q
0
i
= q
i
+ δq
i
{L, x} = {r, L
x
} = [r × i] {L, y} = {r, L
y
} = [r × j]
{L, z} = {r, L
z
} = [r × k];
{L, p
x
} = {p, L
x
} = [p × i] {L, p
y
} = {p, L
y
} = [p × j]
{L, p
z
} = {p, L
z
} = [p × k];
{L, L
x
} = [L × i] {L, L
y
} = [L × j] {L, L
z
} = [L × k]
r p L i j
k
{p, r
2
} {p
2
, r} {p, (a · r)} {(a · p), r}
{L
i
, p
2
} {L
i
, r
2
} {L, (r · p)} {(a · p), (b · r)}
b
2r 2p a a 0 0 0 (a · b)
r p, ϕ(r, p)
{L, ϕ(r, p)} = 0.
L
L = i · L
x
+ j · L
y
+ k · L
z
{L, ϕ(r, p)} = i{L
x
, ϕ(r, p)} + j{L
y
, ϕ(r, p)} + k {L
y
, ϕ(r, p)}.
{L
x
, ϕ(r, p)} =
∂L
x
∂p
x
·
∂ϕ
∂x
−
∂L
x
∂x
·
∂ϕ
∂p
x
+
∂L
x
∂p
y
·
∂ϕ
∂y
−
∂L
x
∂y
·
∂ϕ
∂p
y
+
Çàäà÷à 8.12. Ïîêàçàòü, ÷òî êàíîíè÷åñêèå óðàâíåíèÿ Ãàìèëüòîíà ìîãóò áûòü çàïèñàíû â âèäå: ṗi = {H, pi }, q̇i = {H, qi }. Çàäà÷à 8.13. Äîêàçàòü, èñïîëüçóÿ ñêîáêè Ïóàññîíà, ÷òî îáîáù¼ííûé èì- ïóëüñ pi åñòü èíòåãðàë äâèæåíèÿ, åñëè ôóíêöèÿ Ãàìèëüòîíà íå ìåíÿåòñÿ ïðè ïðåîáðàçîâàíèè qi → qi0 = qi + δqi . Çàäà÷à 8.14. Äîêàçàòü òîæäåñòâà: à) {L, x} = {r, Lx } = [r × i], {L, y} = {r, Ly } = [r × j], {L, z} = {r, Lz } = [r × k]; á) {L, px } = {p, Lx } = [p × i], {L, py } = {p, Ly } = [p × j], {L, pz } = {p, Lz } = [p × k]; â) {L, Lx } = [L × i], {L, Ly } = [L × j], {L, Lz } = [L × k], ãäå r ðàäèóñ-âåêòîð, p èìïóëüñ, L ìîìåíò èìïóëüñà ÷àñòèöû, i, j, k åäèíè÷íûå îðòû äåêàðòîâà áàçèñà. Çàäà÷à 8.15. Âû÷èñëèòü ñêîáêè Ïóàññîíà: à) {p, r2 }; á) {p2 , r}; â) {p, (a · r)}; ã) {(a · p), r} ä) {Li , p2 }; å) {Li , r2 }; æ) {L, (r · p)}; ç) {(a · p), (b · r)}; ãäå a è b ïîñòîÿííûå âåêòîðû. Îòâåò : à) 2r; á) 2p; â) a; ã) a; ä) 0; å) 0; æ) 0; ç) (a · b). Çàäà÷à 8.16. Ïîêàçàòü, ÷òî äëÿ ïðîèçâîëüíîé ñêàëÿðíîé ôóíêöèè ðàäèóñà- âåêòîðà r è èìïóëüñà p, ϕ(r, p) {L, ϕ(r, p)} = 0. (8.29) Ðåøåíèå . Ðàçëîæèâ âåêòîð L ïî äåêàðòîâó áàçèñó L = i · Lx + j · Ly + k · Lz è âîñïîëüçîâàâøèñü äèñòðèáóòèâíîñòüþ ñêîáîê Ïóàññîíà (8.10), ïîëó÷èì: {L, ϕ(r, p)} = i{Lx , ϕ(r, p)} + j{Ly , ϕ(r, p)} + k {Ly , ϕ(r, p)} . (8.30) Ðàññìîòðèì îäíó èç òðåõ ñêîáîê Ïóàññîíà â ïîñëåäíåì âûðàæåíèè, íàïðèìåð, ∂Lx ∂ϕ ∂Lx ∂ϕ ∂Lx ∂ϕ ∂Lx ∂ϕ {Lx , ϕ(r, p)} = · − · + · − · + ∂px ∂x ∂x ∂px ∂py ∂y ∂y ∂py 77
Страницы
- « первая
- ‹ предыдущая
- …
- 76
- 77
- 78
- 79
- 80
- …
- следующая ›
- последняя »