ВУЗ:
Составители:
Рубрика:
H
0
= H +
∂F
∂t
F(q, P) =
X
α
q
α
P
α
F(q, Q) =
X
α
q
α
Q
α
F(q, P) =
X
α
f
α
(q, t)P
α
f
α
p
α
=
∂F
∂q
α
= P
α
, Q
α
=
∂F
∂P
α
= q
α
, H
0
= H
p
α
=
∂F
∂q
α
= Q
α
, P
α
= −
∂F
∂Q
α
= −q
α
, H
0
= H
Q
α
=
∂F
∂P
α
= f
α
(q, t), p
α
=
∂F
∂q
α
=
X
β
∂f
β
∂q
α
P
β
,
H
0
= H +
∂F
∂t
= H +
X
α
∂f
α
∂t
P
α
F(q, P, t) = qP + (aq −bP)t a, b
H =
p
2
2m
Q = q − bt, p = P + at, H
0
=
p
2
2m
+ aq − bP.
H
0
P Q H
0
=
(P + at)
2
2m
+ aQ− bP + abt.
˙
P = −a
˙
Q =
P + at
m
− b.
P = −at + P
0
, Q =
P
0
t
m
− bt + Q
0
.
F =
mω
2
q
2
ctg Q
∂F
Âî âñåõ ñëó÷àÿõ H0 = H + .
∂t
Çàäà÷à 8.19. Âûÿñíèòü ñìûñë êàíîíè÷åñêèõ ïðåîáðàçîâàíèé, çàäàâàåìûõ
ïðîèçâîäÿùèìèX ôóíêöèÿìè:
à) F(q, P) = qα Pα ;
α
X
á) F(q, Q) = qα Q α ;
α
X
â) F(q, P) = fα (q, t)Pα ;
α
fα -íåçàâèñèìûå ïðîèçâîëüíûå ôóíêöèè.
∂F ∂F
Ðåøåíèå . à) pα = = Pα , Qα = = qα , H0 = H òîæäåñòâåííîå
∂qα ∂Pα
ïðåîáðàçîâàíèå;
∂F ∂F
á) pα = = Qα , Pα = − = −qα , H0 = H ïåðåèìåíîâàíèå
∂qα ∂Qα
êîîðäèíàò â èìïóëüñû è íàîáîðîò;
∂F ∂F X ∂fβ
â) Qα = = fα (q, t), pα = = Pβ ,
∂Pα ∂qα ∂qα
β
∂F X ∂fα
H0 = H + =H+ Pα òî÷å÷íîå ïðåîáðàçîâàíèå.
∂t α
∂t
Çàäà÷à 8.20. Íàéòè êàíîíè÷åñêîå ïðåîáðàçîâàíèå, ñîîòâåòñòâóþùåå ïðîèç-
âîäÿùåé ôóíêöèè F(q, P, t) = qP + (aq − bP)t, ãäå a, b ïîñòîÿííûå. Íàïè-
ñàòü è ïðîèíòåãðèðîâàòü íîâûå óðàâíåíèÿ Ãàìèëüòîíà äëÿ ñëó÷àÿ ñâîáîä-
íîé ÷àñòèöû.
p2
Ðåøåíèå . Èç (8.32), ïîëàãàÿ H = , íàõîäèì
2m
p2
0
Q = q − bt, p = P + at, H = + aq − bP.
2m
0 (P + at)2
0
Âûðàçèì H ÷åðåç P è Q : H = + aQ − bP + abt.
2m
P + at
Óðàâíåíèÿ Ãàìèëüòîíà: Ṗ = −a, Q̇ = − b.
m
P0 t
Èõ ðåøåíèå: P = −at + P0 , Q = − bt + Q0 .
m
Çàäà÷à 8.21. Ïðèìåíèòü êàíîíè÷åñêîå ïðåîáðàçîâàíèå, çàäàâàåìîå ïðîèç-
mω 2
âîäÿùåé ôóíêöèåé F = q ctg Q, ê ôóíêöèè Ãàìèëüòîíà îäíîìåðíîãî
2
79
Страницы
- « первая
- ‹ предыдущая
- …
- 78
- 79
- 80
- 81
- 82
- …
- следующая ›
- последняя »
