Теоретическая механика. Часть 1. Статика. Кинематика: комплексное учебное пособие. Манжосов В.К - 91 стр.

UptoLike

91
м/с.82,2222
м/с;42
м/с;82,2222
2222
2222
ССССEСE
CCCCDCD
ССССВСB
2-й вариант. Примем мгновенный центр скоростей колеса за полюс. Тогда скорости
всех точек колеса определятся как вращательные скорости вокруг мгновенного центра
скоростей. Модули скоростей всех точек найдутся по пропорциональности скоростей их
расстояниям от мгновенного центра скоростей:
.м/с42
CCD
PC
PD
Так как
,2RРЕРВ
то
;м/с82,22
CCB
PC
PB
м/с.82,22
CCЕ
PC
PЕ
Найденные скорости точек направлены перпендикулярно соответствующим отрезкам в
сторону вращения колеса (рис. 1.2.32, в).
Аналогичное распределение скоростей имеет место при качении колеса без скольжения
по любой поверхности.
Теорема о центре поворота для конечного перемещения плоской фигуры
(теорема Шаля). Мгновенный центр вращения фигуры
Плоскую фигуру можно переместить из одного положения в любое другое положение
на плоскости одним поворотом этой фигуры вокруг некоторого неподвижного центра
(рис. 1.2.33).
Предельным положением центра поворота при стремлении времени перемещения
плоской фигуры М к нулю является точка неподвижной плоскости, с которой в данный
момент времени совпадает мгновенный центр скоростей плоской фигуры.
Точка С* есть точка неподвижной плоскости, с которой в данный момент времени
совпадает мгновенный центр скоростей
Р. Эту точку называют мгновенным центром
вращения фигуры
(рис. 1.2.34).
Рис. 1.2.33 Рис. 1.2.34